Geometry of epimorphisms and frames
- Autores
- Corach, Gustavo; Pacheco, Miriam; Stojanoff, Demetrio
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Using a bijection between the set BH of all Bessel sequences in a (separable) Hilbert space H and the space L(ℓ2, H) of all (bounded linear) operators from ℓ2 to H, we endow the set F of all frames in H with a natural topology for which we determine the connected components of F. We show that each component is a homogeneous space of the group GL(ℓ2) of invertible operators of ℓ2. This geometrical result shows that every smooth curve in F can be lifted to a curve in GL(ℓ2): given a smooth curve γ in F such that γ(0) = ξ, there exists a smooth curve γ in GL(ℓ2) such that γ = ξ, where the dot indicates the action of GL(ℓ2) over F. We also present a similar study of the set of Riesz sequences.
Facultad de Ciencias Exactas - Materia
-
Matemática
Bessel sequence
Epimorphisms
Fibre bundle
Frame
Riesz sequence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/83388
Ver los metadatos del registro completo
id |
SEDICI_4790dc5de070baaaa942f898638130d0 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/83388 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Geometry of epimorphisms and framesCorach, GustavoPacheco, MiriamStojanoff, DemetrioMatemáticaBessel sequenceEpimorphismsFibre bundleFrameRiesz sequenceUsing a bijection between the set BH of all Bessel sequences in a (separable) Hilbert space H and the space L(ℓ2, H) of all (bounded linear) operators from ℓ2 to H, we endow the set F of all frames in H with a natural topology for which we determine the connected components of F. We show that each component is a homogeneous space of the group GL(ℓ2) of invertible operators of ℓ2. This geometrical result shows that every smooth curve in F can be lifted to a curve in GL(ℓ2): given a smooth curve γ in F such that γ(0) = ξ, there exists a smooth curve γ in GL(ℓ2) such that γ = ξ, where the dot indicates the action of GL(ℓ2) over F. We also present a similar study of the set of Riesz sequences.Facultad de Ciencias Exactas2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/83388enginfo:eu-repo/semantics/altIdentifier/issn/0002-9939info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-04-07380-0info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:07:43Zoai:sedici.unlp.edu.ar:10915/83388Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:07:43.375SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Geometry of epimorphisms and frames |
title |
Geometry of epimorphisms and frames |
spellingShingle |
Geometry of epimorphisms and frames Corach, Gustavo Matemática Bessel sequence Epimorphisms Fibre bundle Frame Riesz sequence |
title_short |
Geometry of epimorphisms and frames |
title_full |
Geometry of epimorphisms and frames |
title_fullStr |
Geometry of epimorphisms and frames |
title_full_unstemmed |
Geometry of epimorphisms and frames |
title_sort |
Geometry of epimorphisms and frames |
dc.creator.none.fl_str_mv |
Corach, Gustavo Pacheco, Miriam Stojanoff, Demetrio |
author |
Corach, Gustavo |
author_facet |
Corach, Gustavo Pacheco, Miriam Stojanoff, Demetrio |
author_role |
author |
author2 |
Pacheco, Miriam Stojanoff, Demetrio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Matemática Bessel sequence Epimorphisms Fibre bundle Frame Riesz sequence |
topic |
Matemática Bessel sequence Epimorphisms Fibre bundle Frame Riesz sequence |
dc.description.none.fl_txt_mv |
Using a bijection between the set BH of all Bessel sequences in a (separable) Hilbert space H and the space L(ℓ2, H) of all (bounded linear) operators from ℓ2 to H, we endow the set F of all frames in H with a natural topology for which we determine the connected components of F. We show that each component is a homogeneous space of the group GL(ℓ2) of invertible operators of ℓ2. This geometrical result shows that every smooth curve in F can be lifted to a curve in GL(ℓ2): given a smooth curve γ in F such that γ(0) = ξ, there exists a smooth curve γ in GL(ℓ2) such that γ = ξ, where the dot indicates the action of GL(ℓ2) over F. We also present a similar study of the set of Riesz sequences. Facultad de Ciencias Exactas |
description |
Using a bijection between the set BH of all Bessel sequences in a (separable) Hilbert space H and the space L(ℓ2, H) of all (bounded linear) operators from ℓ2 to H, we endow the set F of all frames in H with a natural topology for which we determine the connected components of F. We show that each component is a homogeneous space of the group GL(ℓ2) of invertible operators of ℓ2. This geometrical result shows that every smooth curve in F can be lifted to a curve in GL(ℓ2): given a smooth curve γ in F such that γ(0) = ξ, there exists a smooth curve γ in GL(ℓ2) such that γ = ξ, where the dot indicates the action of GL(ℓ2) over F. We also present a similar study of the set of Riesz sequences. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/83388 |
url |
http://sedici.unlp.edu.ar/handle/10915/83388 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0002-9939 info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-04-07380-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064133486673920 |
score |
13.22299 |