Geometry of epimorphisms and frames
- Autores
- Corach, Gustavo; Pacheco, Miriam; Stojanoff, Demetrio
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Using a bijection between the set BH of all Bessel sequences in a (separable) Hilbert space H and the space L(ℓ2, H) of all (bounded linear) operators from ℓ2 to H, we endow the set F of all frames in H with a natural topology for which we determine the connected components of F. We show that each component is a homogeneous space of the group GL(ℓ2) of invertible operators of ℓ2. This geometrical result shows that every smooth curve in F can be lifted to a curve in GL(ℓ2): given a smooth curve γ in F such that γ(0) = ξ, there exists a smooth curve γ in GL(ℓ2) such that γ = ξ, where the dot indicates the action of GL(ℓ2) over F. We also present a similar study of the set of Riesz sequences.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Pacheco, Miriam. No especifíca;
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
FIBRE BUNDLE
FRAME
EPIMORPHISMS
BESSEL SEQUENCE
RIESZ SEQUENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/109652
Ver los metadatos del registro completo
id |
CONICETDig_1bc09842dc83c76ac4f8e06dd46ef7ec |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/109652 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Geometry of epimorphisms and framesCorach, GustavoPacheco, MiriamStojanoff, DemetrioFIBRE BUNDLEFRAMEEPIMORPHISMSBESSEL SEQUENCERIESZ SEQUENCEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Using a bijection between the set BH of all Bessel sequences in a (separable) Hilbert space H and the space L(ℓ2, H) of all (bounded linear) operators from ℓ2 to H, we endow the set F of all frames in H with a natural topology for which we determine the connected components of F. We show that each component is a homogeneous space of the group GL(ℓ2) of invertible operators of ℓ2. This geometrical result shows that every smooth curve in F can be lifted to a curve in GL(ℓ2): given a smooth curve γ in F such that γ(0) = ξ, there exists a smooth curve γ in GL(ℓ2) such that γ = ξ, where the dot indicates the action of GL(ℓ2) over F. We also present a similar study of the set of Riesz sequences.Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Pacheco, Miriam. No especifíca;Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaAmerican Mathematical Society2004-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109652Corach, Gustavo; Pacheco, Miriam; Stojanoff, Demetrio; Geometry of epimorphisms and frames; American Mathematical Society; Proceedings of the American Mathematical Society; 132; 7; 7-2004; 2039-20490002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2004-132-07/home.htmlinfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2004-132-07/S0002-9939-04-07380-0/S0002-9939-04-07380-0.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:56Zoai:ri.conicet.gov.ar:11336/109652instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:57.067CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Geometry of epimorphisms and frames |
title |
Geometry of epimorphisms and frames |
spellingShingle |
Geometry of epimorphisms and frames Corach, Gustavo FIBRE BUNDLE FRAME EPIMORPHISMS BESSEL SEQUENCE RIESZ SEQUENCE |
title_short |
Geometry of epimorphisms and frames |
title_full |
Geometry of epimorphisms and frames |
title_fullStr |
Geometry of epimorphisms and frames |
title_full_unstemmed |
Geometry of epimorphisms and frames |
title_sort |
Geometry of epimorphisms and frames |
dc.creator.none.fl_str_mv |
Corach, Gustavo Pacheco, Miriam Stojanoff, Demetrio |
author |
Corach, Gustavo |
author_facet |
Corach, Gustavo Pacheco, Miriam Stojanoff, Demetrio |
author_role |
author |
author2 |
Pacheco, Miriam Stojanoff, Demetrio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FIBRE BUNDLE FRAME EPIMORPHISMS BESSEL SEQUENCE RIESZ SEQUENCE |
topic |
FIBRE BUNDLE FRAME EPIMORPHISMS BESSEL SEQUENCE RIESZ SEQUENCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Using a bijection between the set BH of all Bessel sequences in a (separable) Hilbert space H and the space L(ℓ2, H) of all (bounded linear) operators from ℓ2 to H, we endow the set F of all frames in H with a natural topology for which we determine the connected components of F. We show that each component is a homogeneous space of the group GL(ℓ2) of invertible operators of ℓ2. This geometrical result shows that every smooth curve in F can be lifted to a curve in GL(ℓ2): given a smooth curve γ in F such that γ(0) = ξ, there exists a smooth curve γ in GL(ℓ2) such that γ = ξ, where the dot indicates the action of GL(ℓ2) over F. We also present a similar study of the set of Riesz sequences. Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Pacheco, Miriam. No especifíca; Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina |
description |
Using a bijection between the set BH of all Bessel sequences in a (separable) Hilbert space H and the space L(ℓ2, H) of all (bounded linear) operators from ℓ2 to H, we endow the set F of all frames in H with a natural topology for which we determine the connected components of F. We show that each component is a homogeneous space of the group GL(ℓ2) of invertible operators of ℓ2. This geometrical result shows that every smooth curve in F can be lifted to a curve in GL(ℓ2): given a smooth curve γ in F such that γ(0) = ξ, there exists a smooth curve γ in GL(ℓ2) such that γ = ξ, where the dot indicates the action of GL(ℓ2) over F. We also present a similar study of the set of Riesz sequences. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/109652 Corach, Gustavo; Pacheco, Miriam; Stojanoff, Demetrio; Geometry of epimorphisms and frames; American Mathematical Society; Proceedings of the American Mathematical Society; 132; 7; 7-2004; 2039-2049 0002-9939 1088-6826 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/109652 |
identifier_str_mv |
Corach, Gustavo; Pacheco, Miriam; Stojanoff, Demetrio; Geometry of epimorphisms and frames; American Mathematical Society; Proceedings of the American Mathematical Society; 132; 7; 7-2004; 2039-2049 0002-9939 1088-6826 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2004-132-07/home.html info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2004-132-07/S0002-9939-04-07380-0/S0002-9939-04-07380-0.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614366790418432 |
score |
13.070432 |