On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms
- Autores
- Altieri, Andrés Oscar
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper analyzes the correlation matrix between the a priori error and measurement noise vectors for standard and augmented affine projection algorithms using a unified approach. This correlation stems from the dependence between the filter tap estimates and the noise samples, and has a strong influence on the mean square behavior of the algorithm. We show that the correlation matrix is upper triangular, and compute the diagonal elements in closed form, showing that they are independent of the input process statistics. Also, for white inputs we show that the matrix is fully diagonal. These results are valid in the transient and steady states, considering a possibly variable step-size. Our only assumption is that the filter order is large compared to its projection order and that the input signal is stationary. Using these results, we perform a steady-state analysis for small step size and provide a new simple closed-form expression for the mean-square error, which has comparable or better accuracy to many preexisting expressions, and is much simpler to compute. Finally, we also obtain expressions for the steady-state energy of the other components of the error vector.
Fil: Altieri, Andrés Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina - Materia
-
ADAPTIVE FILTER
AFFINE PROJECTION ALGORITHM
WIDELY LINEAR MODEL
A PRIORI ERROR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/239956
Ver los metadatos del registro completo
id |
CONICETDig_d46fb1b23e5dfeec172c29342a1c3868 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/239956 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithmsAltieri, Andrés OscarADAPTIVE FILTERAFFINE PROJECTION ALGORITHMWIDELY LINEAR MODELA PRIORI ERRORhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper analyzes the correlation matrix between the a priori error and measurement noise vectors for standard and augmented affine projection algorithms using a unified approach. This correlation stems from the dependence between the filter tap estimates and the noise samples, and has a strong influence on the mean square behavior of the algorithm. We show that the correlation matrix is upper triangular, and compute the diagonal elements in closed form, showing that they are independent of the input process statistics. Also, for white inputs we show that the matrix is fully diagonal. These results are valid in the transient and steady states, considering a possibly variable step-size. Our only assumption is that the filter order is large compared to its projection order and that the input signal is stationary. Using these results, we perform a steady-state analysis for small step size and provide a new simple closed-form expression for the mean-square error, which has comparable or better accuracy to many preexisting expressions, and is much simpler to compute. Finally, we also obtain expressions for the steady-state energy of the other components of the error vector.Fil: Altieri, Andrés Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; ArgentinaElsevier Science2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/239956Altieri, Andrés Oscar; On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms; Elsevier Science; Signal Processing; 218; 5-2024; 1-140165-1684CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.sigpro.2024.109386info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:56:18Zoai:ri.conicet.gov.ar:11336/239956instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:56:18.606CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms |
title |
On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms |
spellingShingle |
On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms Altieri, Andrés Oscar ADAPTIVE FILTER AFFINE PROJECTION ALGORITHM WIDELY LINEAR MODEL A PRIORI ERROR |
title_short |
On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms |
title_full |
On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms |
title_fullStr |
On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms |
title_full_unstemmed |
On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms |
title_sort |
On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms |
dc.creator.none.fl_str_mv |
Altieri, Andrés Oscar |
author |
Altieri, Andrés Oscar |
author_facet |
Altieri, Andrés Oscar |
author_role |
author |
dc.subject.none.fl_str_mv |
ADAPTIVE FILTER AFFINE PROJECTION ALGORITHM WIDELY LINEAR MODEL A PRIORI ERROR |
topic |
ADAPTIVE FILTER AFFINE PROJECTION ALGORITHM WIDELY LINEAR MODEL A PRIORI ERROR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper analyzes the correlation matrix between the a priori error and measurement noise vectors for standard and augmented affine projection algorithms using a unified approach. This correlation stems from the dependence between the filter tap estimates and the noise samples, and has a strong influence on the mean square behavior of the algorithm. We show that the correlation matrix is upper triangular, and compute the diagonal elements in closed form, showing that they are independent of the input process statistics. Also, for white inputs we show that the matrix is fully diagonal. These results are valid in the transient and steady states, considering a possibly variable step-size. Our only assumption is that the filter order is large compared to its projection order and that the input signal is stationary. Using these results, we perform a steady-state analysis for small step size and provide a new simple closed-form expression for the mean-square error, which has comparable or better accuracy to many preexisting expressions, and is much simpler to compute. Finally, we also obtain expressions for the steady-state energy of the other components of the error vector. Fil: Altieri, Andrés Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina |
description |
This paper analyzes the correlation matrix between the a priori error and measurement noise vectors for standard and augmented affine projection algorithms using a unified approach. This correlation stems from the dependence between the filter tap estimates and the noise samples, and has a strong influence on the mean square behavior of the algorithm. We show that the correlation matrix is upper triangular, and compute the diagonal elements in closed form, showing that they are independent of the input process statistics. Also, for white inputs we show that the matrix is fully diagonal. These results are valid in the transient and steady states, considering a possibly variable step-size. Our only assumption is that the filter order is large compared to its projection order and that the input signal is stationary. Using these results, we perform a steady-state analysis for small step size and provide a new simple closed-form expression for the mean-square error, which has comparable or better accuracy to many preexisting expressions, and is much simpler to compute. Finally, we also obtain expressions for the steady-state energy of the other components of the error vector. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/239956 Altieri, Andrés Oscar; On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms; Elsevier Science; Signal Processing; 218; 5-2024; 1-14 0165-1684 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/239956 |
identifier_str_mv |
Altieri, Andrés Oscar; On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms; Elsevier Science; Signal Processing; 218; 5-2024; 1-14 0165-1684 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sigpro.2024.109386 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083098216759296 |
score |
13.22299 |