On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms

Autores
Altieri, Andrés Oscar
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper analyzes the correlation matrix between the a priori error and measurement noise vectors for standard and augmented affine projection algorithms using a unified approach. This correlation stems from the dependence between the filter tap estimates and the noise samples, and has a strong influence on the mean square behavior of the algorithm. We show that the correlation matrix is upper triangular, and compute the diagonal elements in closed form, showing that they are independent of the input process statistics. Also, for white inputs we show that the matrix is fully diagonal. These results are valid in the transient and steady states, considering a possibly variable step-size. Our only assumption is that the filter order is large compared to its projection order and that the input signal is stationary. Using these results, we perform a steady-state analysis for small step size and provide a new simple closed-form expression for the mean-square error, which has comparable or better accuracy to many preexisting expressions, and is much simpler to compute. Finally, we also obtain expressions for the steady-state energy of the other components of the error vector.
Fil: Altieri, Andrés Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
Materia
ADAPTIVE FILTER
AFFINE PROJECTION ALGORITHM
WIDELY LINEAR MODEL
A PRIORI ERROR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/239956

id CONICETDig_d46fb1b23e5dfeec172c29342a1c3868
oai_identifier_str oai:ri.conicet.gov.ar:11336/239956
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithmsAltieri, Andrés OscarADAPTIVE FILTERAFFINE PROJECTION ALGORITHMWIDELY LINEAR MODELA PRIORI ERRORhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper analyzes the correlation matrix between the a priori error and measurement noise vectors for standard and augmented affine projection algorithms using a unified approach. This correlation stems from the dependence between the filter tap estimates and the noise samples, and has a strong influence on the mean square behavior of the algorithm. We show that the correlation matrix is upper triangular, and compute the diagonal elements in closed form, showing that they are independent of the input process statistics. Also, for white inputs we show that the matrix is fully diagonal. These results are valid in the transient and steady states, considering a possibly variable step-size. Our only assumption is that the filter order is large compared to its projection order and that the input signal is stationary. Using these results, we perform a steady-state analysis for small step size and provide a new simple closed-form expression for the mean-square error, which has comparable or better accuracy to many preexisting expressions, and is much simpler to compute. Finally, we also obtain expressions for the steady-state energy of the other components of the error vector.Fil: Altieri, Andrés Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; ArgentinaElsevier Science2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/239956Altieri, Andrés Oscar; On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms; Elsevier Science; Signal Processing; 218; 5-2024; 1-140165-1684CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.sigpro.2024.109386info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:56:18Zoai:ri.conicet.gov.ar:11336/239956instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:56:18.606CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms
title On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms
spellingShingle On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms
Altieri, Andrés Oscar
ADAPTIVE FILTER
AFFINE PROJECTION ALGORITHM
WIDELY LINEAR MODEL
A PRIORI ERROR
title_short On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms
title_full On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms
title_fullStr On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms
title_full_unstemmed On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms
title_sort On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms
dc.creator.none.fl_str_mv Altieri, Andrés Oscar
author Altieri, Andrés Oscar
author_facet Altieri, Andrés Oscar
author_role author
dc.subject.none.fl_str_mv ADAPTIVE FILTER
AFFINE PROJECTION ALGORITHM
WIDELY LINEAR MODEL
A PRIORI ERROR
topic ADAPTIVE FILTER
AFFINE PROJECTION ALGORITHM
WIDELY LINEAR MODEL
A PRIORI ERROR
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper analyzes the correlation matrix between the a priori error and measurement noise vectors for standard and augmented affine projection algorithms using a unified approach. This correlation stems from the dependence between the filter tap estimates and the noise samples, and has a strong influence on the mean square behavior of the algorithm. We show that the correlation matrix is upper triangular, and compute the diagonal elements in closed form, showing that they are independent of the input process statistics. Also, for white inputs we show that the matrix is fully diagonal. These results are valid in the transient and steady states, considering a possibly variable step-size. Our only assumption is that the filter order is large compared to its projection order and that the input signal is stationary. Using these results, we perform a steady-state analysis for small step size and provide a new simple closed-form expression for the mean-square error, which has comparable or better accuracy to many preexisting expressions, and is much simpler to compute. Finally, we also obtain expressions for the steady-state energy of the other components of the error vector.
Fil: Altieri, Andrés Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
description This paper analyzes the correlation matrix between the a priori error and measurement noise vectors for standard and augmented affine projection algorithms using a unified approach. This correlation stems from the dependence between the filter tap estimates and the noise samples, and has a strong influence on the mean square behavior of the algorithm. We show that the correlation matrix is upper triangular, and compute the diagonal elements in closed form, showing that they are independent of the input process statistics. Also, for white inputs we show that the matrix is fully diagonal. These results are valid in the transient and steady states, considering a possibly variable step-size. Our only assumption is that the filter order is large compared to its projection order and that the input signal is stationary. Using these results, we perform a steady-state analysis for small step size and provide a new simple closed-form expression for the mean-square error, which has comparable or better accuracy to many preexisting expressions, and is much simpler to compute. Finally, we also obtain expressions for the steady-state energy of the other components of the error vector.
publishDate 2024
dc.date.none.fl_str_mv 2024-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/239956
Altieri, Andrés Oscar; On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms; Elsevier Science; Signal Processing; 218; 5-2024; 1-14
0165-1684
CONICET Digital
CONICET
url http://hdl.handle.net/11336/239956
identifier_str_mv Altieri, Andrés Oscar; On the correlation between the noise and a priori error vectors for standard and augmented affine projection algorithms; Elsevier Science; Signal Processing; 218; 5-2024; 1-14
0165-1684
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sigpro.2024.109386
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083098216759296
score 13.22299