On PTAS for planar graph problems

Autores
Huang, Xiuzhen; Chen, Jianer
Año de publicación
2006
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Approximation algorithms for a class of planar graph problems, including planar independent set, planar vertex cover and planar dominating set, were intensively studied. The current upper bound on the running time of the polynomial time approximation schemes (PTAS) for these planar graph problems is of 2O(1/∈ )nO(1). Here we study the lower bound on the running time of the PTAS for these planar graph problems. We prove that there is no PTAS of time 2=(√(1/∈ )nO(1) for planar independent set, planar vertex cover and planar dominating set unless an unlikely collapse occurs in parameterized complexity theory. For the gap between our lower bound and the current known upper bound, we speci cally show that to further improve the upper bound on the running time of the PTAS for planar vertex cover, we can concentrate on planar vertex cover on pla- nar graphs of degree bounded by three.
4th IFIP International Conference on Theoretical Computer Science
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
vertex
polynomial time approximation schemes (PTAS)
Graph algorithms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/24423

id SEDICI_4503fe07c8429eac6ab11dec20f31ce0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/24423
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling On PTAS for planar graph problemsHuang, XiuzhenChen, JianerCiencias Informáticasvertexpolynomial time approximation schemes (PTAS)Graph algorithmsApproximation algorithms for a class of planar graph problems, including planar independent set, planar vertex cover and planar dominating set, were intensively studied. The current upper bound on the running time of the polynomial time approximation schemes (PTAS) for these planar graph problems is of 2<sup>O(1/∈ )</sup>n<sup>O(1)</sup>. Here we study the lower bound on the running time of the PTAS for these planar graph problems. We prove that there is no PTAS of time 2<sup>=(√(1/∈ )</sup>n<sup>O(1)</sup> for planar independent set, planar vertex cover and planar dominating set unless an unlikely collapse occurs in parameterized complexity theory. For the gap between our lower bound and the current known upper bound, we speci cally show that to further improve the upper bound on the running time of the PTAS for planar vertex cover, we can concentrate on planar vertex cover on pla- nar graphs of degree bounded by three.4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24423enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34633-3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:50Zoai:sedici.unlp.edu.ar:10915/24423Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:51.074SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv On PTAS for planar graph problems
title On PTAS for planar graph problems
spellingShingle On PTAS for planar graph problems
Huang, Xiuzhen
Ciencias Informáticas
vertex
polynomial time approximation schemes (PTAS)
Graph algorithms
title_short On PTAS for planar graph problems
title_full On PTAS for planar graph problems
title_fullStr On PTAS for planar graph problems
title_full_unstemmed On PTAS for planar graph problems
title_sort On PTAS for planar graph problems
dc.creator.none.fl_str_mv Huang, Xiuzhen
Chen, Jianer
author Huang, Xiuzhen
author_facet Huang, Xiuzhen
Chen, Jianer
author_role author
author2 Chen, Jianer
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
vertex
polynomial time approximation schemes (PTAS)
Graph algorithms
topic Ciencias Informáticas
vertex
polynomial time approximation schemes (PTAS)
Graph algorithms
dc.description.none.fl_txt_mv Approximation algorithms for a class of planar graph problems, including planar independent set, planar vertex cover and planar dominating set, were intensively studied. The current upper bound on the running time of the polynomial time approximation schemes (PTAS) for these planar graph problems is of 2<sup>O(1/∈ )</sup>n<sup>O(1)</sup>. Here we study the lower bound on the running time of the PTAS for these planar graph problems. We prove that there is no PTAS of time 2<sup>=(√(1/∈ )</sup>n<sup>O(1)</sup> for planar independent set, planar vertex cover and planar dominating set unless an unlikely collapse occurs in parameterized complexity theory. For the gap between our lower bound and the current known upper bound, we speci cally show that to further improve the upper bound on the running time of the PTAS for planar vertex cover, we can concentrate on planar vertex cover on pla- nar graphs of degree bounded by three.
4th IFIP International Conference on Theoretical Computer Science
Red de Universidades con Carreras en Informática (RedUNCI)
description Approximation algorithms for a class of planar graph problems, including planar independent set, planar vertex cover and planar dominating set, were intensively studied. The current upper bound on the running time of the polynomial time approximation schemes (PTAS) for these planar graph problems is of 2<sup>O(1/∈ )</sup>n<sup>O(1)</sup>. Here we study the lower bound on the running time of the PTAS for these planar graph problems. We prove that there is no PTAS of time 2<sup>=(√(1/∈ )</sup>n<sup>O(1)</sup> for planar independent set, planar vertex cover and planar dominating set unless an unlikely collapse occurs in parameterized complexity theory. For the gap between our lower bound and the current known upper bound, we speci cally show that to further improve the upper bound on the running time of the PTAS for planar vertex cover, we can concentrate on planar vertex cover on pla- nar graphs of degree bounded by three.
publishDate 2006
dc.date.none.fl_str_mv 2006-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/24423
url http://sedici.unlp.edu.ar/handle/10915/24423
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/0-387-34633-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615818101391360
score 13.070432