On PTAS for planar graph problems
- Autores
- Huang, Xiuzhen; Chen, Jianer
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Approximation algorithms for a class of planar graph problems, including planar independent set, planar vertex cover and planar dominating set, were intensively studied. The current upper bound on the running time of the polynomial time approximation schemes (PTAS) for these planar graph problems is of 2O(1/∈ )nO(1). Here we study the lower bound on the running time of the PTAS for these planar graph problems. We prove that there is no PTAS of time 2=(√(1/∈ )nO(1) for planar independent set, planar vertex cover and planar dominating set unless an unlikely collapse occurs in parameterized complexity theory. For the gap between our lower bound and the current known upper bound, we speci cally show that to further improve the upper bound on the running time of the PTAS for planar vertex cover, we can concentrate on planar vertex cover on pla- nar graphs of degree bounded by three.
4th IFIP International Conference on Theoretical Computer Science
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
vertex
polynomial time approximation schemes (PTAS)
Graph algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/24423
Ver los metadatos del registro completo
id |
SEDICI_4503fe07c8429eac6ab11dec20f31ce0 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/24423 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
On PTAS for planar graph problemsHuang, XiuzhenChen, JianerCiencias Informáticasvertexpolynomial time approximation schemes (PTAS)Graph algorithmsApproximation algorithms for a class of planar graph problems, including planar independent set, planar vertex cover and planar dominating set, were intensively studied. The current upper bound on the running time of the polynomial time approximation schemes (PTAS) for these planar graph problems is of 2<sup>O(1/∈ )</sup>n<sup>O(1)</sup>. Here we study the lower bound on the running time of the PTAS for these planar graph problems. We prove that there is no PTAS of time 2<sup>=(√(1/∈ )</sup>n<sup>O(1)</sup> for planar independent set, planar vertex cover and planar dominating set unless an unlikely collapse occurs in parameterized complexity theory. For the gap between our lower bound and the current known upper bound, we speci cally show that to further improve the upper bound on the running time of the PTAS for planar vertex cover, we can concentrate on planar vertex cover on pla- nar graphs of degree bounded by three.4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24423enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34633-3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:50Zoai:sedici.unlp.edu.ar:10915/24423Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:51.074SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
On PTAS for planar graph problems |
title |
On PTAS for planar graph problems |
spellingShingle |
On PTAS for planar graph problems Huang, Xiuzhen Ciencias Informáticas vertex polynomial time approximation schemes (PTAS) Graph algorithms |
title_short |
On PTAS for planar graph problems |
title_full |
On PTAS for planar graph problems |
title_fullStr |
On PTAS for planar graph problems |
title_full_unstemmed |
On PTAS for planar graph problems |
title_sort |
On PTAS for planar graph problems |
dc.creator.none.fl_str_mv |
Huang, Xiuzhen Chen, Jianer |
author |
Huang, Xiuzhen |
author_facet |
Huang, Xiuzhen Chen, Jianer |
author_role |
author |
author2 |
Chen, Jianer |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas vertex polynomial time approximation schemes (PTAS) Graph algorithms |
topic |
Ciencias Informáticas vertex polynomial time approximation schemes (PTAS) Graph algorithms |
dc.description.none.fl_txt_mv |
Approximation algorithms for a class of planar graph problems, including planar independent set, planar vertex cover and planar dominating set, were intensively studied. The current upper bound on the running time of the polynomial time approximation schemes (PTAS) for these planar graph problems is of 2<sup>O(1/∈ )</sup>n<sup>O(1)</sup>. Here we study the lower bound on the running time of the PTAS for these planar graph problems. We prove that there is no PTAS of time 2<sup>=(√(1/∈ )</sup>n<sup>O(1)</sup> for planar independent set, planar vertex cover and planar dominating set unless an unlikely collapse occurs in parameterized complexity theory. For the gap between our lower bound and the current known upper bound, we speci cally show that to further improve the upper bound on the running time of the PTAS for planar vertex cover, we can concentrate on planar vertex cover on pla- nar graphs of degree bounded by three. 4th IFIP International Conference on Theoretical Computer Science Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Approximation algorithms for a class of planar graph problems, including planar independent set, planar vertex cover and planar dominating set, were intensively studied. The current upper bound on the running time of the polynomial time approximation schemes (PTAS) for these planar graph problems is of 2<sup>O(1/∈ )</sup>n<sup>O(1)</sup>. Here we study the lower bound on the running time of the PTAS for these planar graph problems. We prove that there is no PTAS of time 2<sup>=(√(1/∈ )</sup>n<sup>O(1)</sup> for planar independent set, planar vertex cover and planar dominating set unless an unlikely collapse occurs in parameterized complexity theory. For the gap between our lower bound and the current known upper bound, we speci cally show that to further improve the upper bound on the running time of the PTAS for planar vertex cover, we can concentrate on planar vertex cover on pla- nar graphs of degree bounded by three. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/24423 |
url |
http://sedici.unlp.edu.ar/handle/10915/24423 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/0-387-34633-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615818101391360 |
score |
13.070432 |