Solving problems on generalized convex graphs via mim-width

Autores
Bonomo, Flavia; Brettell, Nick; Munaro, Andrea; Paulusma, Daniël
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A bipartite graph G = (A, B, E) is H-convex, for some family of graphs H, if there exists a graph F ∈ H with V (F) = A such that the set of neighbours in A of each b ∈ B induces a connected subgraph of F. Many NP-complete problems, including problems such as Dominating Set, Feedback Vertex Set, Induced Matching and List k-Colouring, become polynomial-time solvable for H-convex graphs when H is the set of paths. In this case, the class of H-convex graphs is known as the class of convex graphs. The underlying reason is that the class of convex graphs has bounded mim-width. We extend the latter result to families of H-convex graphs where (i) H is the set of cycles, or (ii) H is the set of trees with bounded maximum degree and a bounded number of vertices of degree at least 3. As a consequence, we can strengthen a large number of results on generalized convex graphs known in the literature via one general and relatively short proof. To complement result (ii), we show that the mim-width of H-convex graphs is unbounded if H is the set of trees with arbitrarilylarge maximum degree or an arbitrarily large number of vertices of degree at least 3.In this way we are able to determine complexity dichotomies for the aforementioned graph problems. We prove our results via a more refined width-parameter analysis. This yields an even clearer picture of which width parameters are bounded for classes of H-convex graphs.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Brettell, Nick. Victoria University Of Wellington; Nueva Zelanda
Fil: Munaro, Andrea. Università di Parma; Italia
Fil: Paulusma, Daniël. University of Durham; Reino Unido
Materia
convex-graph
mim-width
width parameter
polynomial-time algorithm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/256515

id CONICETDig_59601ed90982ab50b8c82c7cd0934c41
oai_identifier_str oai:ri.conicet.gov.ar:11336/256515
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Solving problems on generalized convex graphs via mim-widthBonomo, FlaviaBrettell, NickMunaro, AndreaPaulusma, Daniëlconvex-graphmim-widthwidth parameterpolynomial-time algorithmhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A bipartite graph G = (A, B, E) is H-convex, for some family of graphs H, if there exists a graph F ∈ H with V (F) = A such that the set of neighbours in A of each b ∈ B induces a connected subgraph of F. Many NP-complete problems, including problems such as Dominating Set, Feedback Vertex Set, Induced Matching and List k-Colouring, become polynomial-time solvable for H-convex graphs when H is the set of paths. In this case, the class of H-convex graphs is known as the class of convex graphs. The underlying reason is that the class of convex graphs has bounded mim-width. We extend the latter result to families of H-convex graphs where (i) H is the set of cycles, or (ii) H is the set of trees with bounded maximum degree and a bounded number of vertices of degree at least 3. As a consequence, we can strengthen a large number of results on generalized convex graphs known in the literature via one general and relatively short proof. To complement result (ii), we show that the mim-width of H-convex graphs is unbounded if H is the set of trees with arbitrarilylarge maximum degree or an arbitrarily large number of vertices of degree at least 3.In this way we are able to determine complexity dichotomies for the aforementioned graph problems. We prove our results via a more refined width-parameter analysis. This yields an even clearer picture of which width parameters are bounded for classes of H-convex graphs.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Brettell, Nick. Victoria University Of Wellington; Nueva ZelandaFil: Munaro, Andrea. Università di Parma; ItaliaFil: Paulusma, Daniël. University of Durham; Reino UnidoAcademic Press Inc Elsevier Science2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256515Bonomo, Flavia; Brettell, Nick; Munaro, Andrea; Paulusma, Daniël; Solving problems on generalized convex graphs via mim-width; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 140; 3-2024; 1-150022-0000CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcss.2023.103493info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:54Zoai:ri.conicet.gov.ar:11336/256515instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:54.878CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Solving problems on generalized convex graphs via mim-width
title Solving problems on generalized convex graphs via mim-width
spellingShingle Solving problems on generalized convex graphs via mim-width
Bonomo, Flavia
convex-graph
mim-width
width parameter
polynomial-time algorithm
title_short Solving problems on generalized convex graphs via mim-width
title_full Solving problems on generalized convex graphs via mim-width
title_fullStr Solving problems on generalized convex graphs via mim-width
title_full_unstemmed Solving problems on generalized convex graphs via mim-width
title_sort Solving problems on generalized convex graphs via mim-width
dc.creator.none.fl_str_mv Bonomo, Flavia
Brettell, Nick
Munaro, Andrea
Paulusma, Daniël
author Bonomo, Flavia
author_facet Bonomo, Flavia
Brettell, Nick
Munaro, Andrea
Paulusma, Daniël
author_role author
author2 Brettell, Nick
Munaro, Andrea
Paulusma, Daniël
author2_role author
author
author
dc.subject.none.fl_str_mv convex-graph
mim-width
width parameter
polynomial-time algorithm
topic convex-graph
mim-width
width parameter
polynomial-time algorithm
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A bipartite graph G = (A, B, E) is H-convex, for some family of graphs H, if there exists a graph F ∈ H with V (F) = A such that the set of neighbours in A of each b ∈ B induces a connected subgraph of F. Many NP-complete problems, including problems such as Dominating Set, Feedback Vertex Set, Induced Matching and List k-Colouring, become polynomial-time solvable for H-convex graphs when H is the set of paths. In this case, the class of H-convex graphs is known as the class of convex graphs. The underlying reason is that the class of convex graphs has bounded mim-width. We extend the latter result to families of H-convex graphs where (i) H is the set of cycles, or (ii) H is the set of trees with bounded maximum degree and a bounded number of vertices of degree at least 3. As a consequence, we can strengthen a large number of results on generalized convex graphs known in the literature via one general and relatively short proof. To complement result (ii), we show that the mim-width of H-convex graphs is unbounded if H is the set of trees with arbitrarilylarge maximum degree or an arbitrarily large number of vertices of degree at least 3.In this way we are able to determine complexity dichotomies for the aforementioned graph problems. We prove our results via a more refined width-parameter analysis. This yields an even clearer picture of which width parameters are bounded for classes of H-convex graphs.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Brettell, Nick. Victoria University Of Wellington; Nueva Zelanda
Fil: Munaro, Andrea. Università di Parma; Italia
Fil: Paulusma, Daniël. University of Durham; Reino Unido
description A bipartite graph G = (A, B, E) is H-convex, for some family of graphs H, if there exists a graph F ∈ H with V (F) = A such that the set of neighbours in A of each b ∈ B induces a connected subgraph of F. Many NP-complete problems, including problems such as Dominating Set, Feedback Vertex Set, Induced Matching and List k-Colouring, become polynomial-time solvable for H-convex graphs when H is the set of paths. In this case, the class of H-convex graphs is known as the class of convex graphs. The underlying reason is that the class of convex graphs has bounded mim-width. We extend the latter result to families of H-convex graphs where (i) H is the set of cycles, or (ii) H is the set of trees with bounded maximum degree and a bounded number of vertices of degree at least 3. As a consequence, we can strengthen a large number of results on generalized convex graphs known in the literature via one general and relatively short proof. To complement result (ii), we show that the mim-width of H-convex graphs is unbounded if H is the set of trees with arbitrarilylarge maximum degree or an arbitrarily large number of vertices of degree at least 3.In this way we are able to determine complexity dichotomies for the aforementioned graph problems. We prove our results via a more refined width-parameter analysis. This yields an even clearer picture of which width parameters are bounded for classes of H-convex graphs.
publishDate 2024
dc.date.none.fl_str_mv 2024-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/256515
Bonomo, Flavia; Brettell, Nick; Munaro, Andrea; Paulusma, Daniël; Solving problems on generalized convex graphs via mim-width; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 140; 3-2024; 1-15
0022-0000
CONICET Digital
CONICET
url http://hdl.handle.net/11336/256515
identifier_str_mv Bonomo, Flavia; Brettell, Nick; Munaro, Andrea; Paulusma, Daniël; Solving problems on generalized convex graphs via mim-width; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 140; 3-2024; 1-15
0022-0000
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcss.2023.103493
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268824270798848
score 13.13397