Solving problems on generalized convex graphs via mim-width
- Autores
- Bonomo, Flavia; Brettell, Nick; Munaro, Andrea; Paulusma, Daniël
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A bipartite graph G = (A, B, E) is H-convex, for some family of graphs H, if there exists a graph F ∈ H with V (F) = A such that the set of neighbours in A of each b ∈ B induces a connected subgraph of F. Many NP-complete problems, including problems such as Dominating Set, Feedback Vertex Set, Induced Matching and List k-Colouring, become polynomial-time solvable for H-convex graphs when H is the set of paths. In this case, the class of H-convex graphs is known as the class of convex graphs. The underlying reason is that the class of convex graphs has bounded mim-width. We extend the latter result to families of H-convex graphs where (i) H is the set of cycles, or (ii) H is the set of trees with bounded maximum degree and a bounded number of vertices of degree at least 3. As a consequence, we can strengthen a large number of results on generalized convex graphs known in the literature via one general and relatively short proof. To complement result (ii), we show that the mim-width of H-convex graphs is unbounded if H is the set of trees with arbitrarilylarge maximum degree or an arbitrarily large number of vertices of degree at least 3.In this way we are able to determine complexity dichotomies for the aforementioned graph problems. We prove our results via a more refined width-parameter analysis. This yields an even clearer picture of which width parameters are bounded for classes of H-convex graphs.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Brettell, Nick. Victoria University Of Wellington; Nueva Zelanda
Fil: Munaro, Andrea. Università di Parma; Italia
Fil: Paulusma, Daniël. University of Durham; Reino Unido - Materia
-
convex-graph
mim-width
width parameter
polynomial-time algorithm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/256515
Ver los metadatos del registro completo
id |
CONICETDig_59601ed90982ab50b8c82c7cd0934c41 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/256515 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Solving problems on generalized convex graphs via mim-widthBonomo, FlaviaBrettell, NickMunaro, AndreaPaulusma, Daniëlconvex-graphmim-widthwidth parameterpolynomial-time algorithmhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A bipartite graph G = (A, B, E) is H-convex, for some family of graphs H, if there exists a graph F ∈ H with V (F) = A such that the set of neighbours in A of each b ∈ B induces a connected subgraph of F. Many NP-complete problems, including problems such as Dominating Set, Feedback Vertex Set, Induced Matching and List k-Colouring, become polynomial-time solvable for H-convex graphs when H is the set of paths. In this case, the class of H-convex graphs is known as the class of convex graphs. The underlying reason is that the class of convex graphs has bounded mim-width. We extend the latter result to families of H-convex graphs where (i) H is the set of cycles, or (ii) H is the set of trees with bounded maximum degree and a bounded number of vertices of degree at least 3. As a consequence, we can strengthen a large number of results on generalized convex graphs known in the literature via one general and relatively short proof. To complement result (ii), we show that the mim-width of H-convex graphs is unbounded if H is the set of trees with arbitrarilylarge maximum degree or an arbitrarily large number of vertices of degree at least 3.In this way we are able to determine complexity dichotomies for the aforementioned graph problems. We prove our results via a more refined width-parameter analysis. This yields an even clearer picture of which width parameters are bounded for classes of H-convex graphs.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Brettell, Nick. Victoria University Of Wellington; Nueva ZelandaFil: Munaro, Andrea. Università di Parma; ItaliaFil: Paulusma, Daniël. University of Durham; Reino UnidoAcademic Press Inc Elsevier Science2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256515Bonomo, Flavia; Brettell, Nick; Munaro, Andrea; Paulusma, Daniël; Solving problems on generalized convex graphs via mim-width; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 140; 3-2024; 1-150022-0000CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcss.2023.103493info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:54Zoai:ri.conicet.gov.ar:11336/256515instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:54.878CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Solving problems on generalized convex graphs via mim-width |
title |
Solving problems on generalized convex graphs via mim-width |
spellingShingle |
Solving problems on generalized convex graphs via mim-width Bonomo, Flavia convex-graph mim-width width parameter polynomial-time algorithm |
title_short |
Solving problems on generalized convex graphs via mim-width |
title_full |
Solving problems on generalized convex graphs via mim-width |
title_fullStr |
Solving problems on generalized convex graphs via mim-width |
title_full_unstemmed |
Solving problems on generalized convex graphs via mim-width |
title_sort |
Solving problems on generalized convex graphs via mim-width |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Brettell, Nick Munaro, Andrea Paulusma, Daniël |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Brettell, Nick Munaro, Andrea Paulusma, Daniël |
author_role |
author |
author2 |
Brettell, Nick Munaro, Andrea Paulusma, Daniël |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
convex-graph mim-width width parameter polynomial-time algorithm |
topic |
convex-graph mim-width width parameter polynomial-time algorithm |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A bipartite graph G = (A, B, E) is H-convex, for some family of graphs H, if there exists a graph F ∈ H with V (F) = A such that the set of neighbours in A of each b ∈ B induces a connected subgraph of F. Many NP-complete problems, including problems such as Dominating Set, Feedback Vertex Set, Induced Matching and List k-Colouring, become polynomial-time solvable for H-convex graphs when H is the set of paths. In this case, the class of H-convex graphs is known as the class of convex graphs. The underlying reason is that the class of convex graphs has bounded mim-width. We extend the latter result to families of H-convex graphs where (i) H is the set of cycles, or (ii) H is the set of trees with bounded maximum degree and a bounded number of vertices of degree at least 3. As a consequence, we can strengthen a large number of results on generalized convex graphs known in the literature via one general and relatively short proof. To complement result (ii), we show that the mim-width of H-convex graphs is unbounded if H is the set of trees with arbitrarilylarge maximum degree or an arbitrarily large number of vertices of degree at least 3.In this way we are able to determine complexity dichotomies for the aforementioned graph problems. We prove our results via a more refined width-parameter analysis. This yields an even clearer picture of which width parameters are bounded for classes of H-convex graphs. Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Brettell, Nick. Victoria University Of Wellington; Nueva Zelanda Fil: Munaro, Andrea. Università di Parma; Italia Fil: Paulusma, Daniël. University of Durham; Reino Unido |
description |
A bipartite graph G = (A, B, E) is H-convex, for some family of graphs H, if there exists a graph F ∈ H with V (F) = A such that the set of neighbours in A of each b ∈ B induces a connected subgraph of F. Many NP-complete problems, including problems such as Dominating Set, Feedback Vertex Set, Induced Matching and List k-Colouring, become polynomial-time solvable for H-convex graphs when H is the set of paths. In this case, the class of H-convex graphs is known as the class of convex graphs. The underlying reason is that the class of convex graphs has bounded mim-width. We extend the latter result to families of H-convex graphs where (i) H is the set of cycles, or (ii) H is the set of trees with bounded maximum degree and a bounded number of vertices of degree at least 3. As a consequence, we can strengthen a large number of results on generalized convex graphs known in the literature via one general and relatively short proof. To complement result (ii), we show that the mim-width of H-convex graphs is unbounded if H is the set of trees with arbitrarilylarge maximum degree or an arbitrarily large number of vertices of degree at least 3.In this way we are able to determine complexity dichotomies for the aforementioned graph problems. We prove our results via a more refined width-parameter analysis. This yields an even clearer picture of which width parameters are bounded for classes of H-convex graphs. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/256515 Bonomo, Flavia; Brettell, Nick; Munaro, Andrea; Paulusma, Daniël; Solving problems on generalized convex graphs via mim-width; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 140; 3-2024; 1-15 0022-0000 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/256515 |
identifier_str_mv |
Bonomo, Flavia; Brettell, Nick; Munaro, Andrea; Paulusma, Daniël; Solving problems on generalized convex graphs via mim-width; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 140; 3-2024; 1-15 0022-0000 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcss.2023.103493 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268824270798848 |
score |
13.13397 |