A cutting plane algorithm for graph coloring

Autores
Méndez-Díaz, I.; Zabala, P.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present an approach based on integer programming formulations of the graph coloring problem. Our goal is to develop models that remove some symmetrical solutions obtained by color permutations. We study the problem from a polyhedral point of view and determine some families of facets of the 0/1-polytope associated with one of these integer programming formulations. The theoretical results described here are used to design an efficient Cutting Plane algorithm. © 2007 Elsevier B.V. All rights reserved.
Fil:Méndez-Díaz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Zabala, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Discrete Appl Math 2008;156(2):159-179
Materia
Cutting plane algorithms
Facets of polyhedra
Graph coloring
Integer programming
Computer programming
Graph theory
Integer programming
Problem solving
Cutting plane algorithms
Facets of polyhedra
Graph coloring
Algorithms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0166218X_v156_n2_p159_MendezDiaz

id BDUBAFCEN_bdb6a0e73db53ca116715d5ee58ff8a8
oai_identifier_str paperaa:paper_0166218X_v156_n2_p159_MendezDiaz
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A cutting plane algorithm for graph coloringMéndez-Díaz, I.Zabala, P.Cutting plane algorithmsFacets of polyhedraGraph coloringInteger programmingComputer programmingGraph theoryInteger programmingProblem solvingCutting plane algorithmsFacets of polyhedraGraph coloringAlgorithmsWe present an approach based on integer programming formulations of the graph coloring problem. Our goal is to develop models that remove some symmetrical solutions obtained by color permutations. We study the problem from a polyhedral point of view and determine some families of facets of the 0/1-polytope associated with one of these integer programming formulations. The theoretical results described here are used to design an efficient Cutting Plane algorithm. © 2007 Elsevier B.V. All rights reserved.Fil:Méndez-Díaz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Zabala, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0166218X_v156_n2_p159_MendezDiazDiscrete Appl Math 2008;156(2):159-179reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:55Zpaperaa:paper_0166218X_v156_n2_p159_MendezDiazInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:56.428Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A cutting plane algorithm for graph coloring
title A cutting plane algorithm for graph coloring
spellingShingle A cutting plane algorithm for graph coloring
Méndez-Díaz, I.
Cutting plane algorithms
Facets of polyhedra
Graph coloring
Integer programming
Computer programming
Graph theory
Integer programming
Problem solving
Cutting plane algorithms
Facets of polyhedra
Graph coloring
Algorithms
title_short A cutting plane algorithm for graph coloring
title_full A cutting plane algorithm for graph coloring
title_fullStr A cutting plane algorithm for graph coloring
title_full_unstemmed A cutting plane algorithm for graph coloring
title_sort A cutting plane algorithm for graph coloring
dc.creator.none.fl_str_mv Méndez-Díaz, I.
Zabala, P.
author Méndez-Díaz, I.
author_facet Méndez-Díaz, I.
Zabala, P.
author_role author
author2 Zabala, P.
author2_role author
dc.subject.none.fl_str_mv Cutting plane algorithms
Facets of polyhedra
Graph coloring
Integer programming
Computer programming
Graph theory
Integer programming
Problem solving
Cutting plane algorithms
Facets of polyhedra
Graph coloring
Algorithms
topic Cutting plane algorithms
Facets of polyhedra
Graph coloring
Integer programming
Computer programming
Graph theory
Integer programming
Problem solving
Cutting plane algorithms
Facets of polyhedra
Graph coloring
Algorithms
dc.description.none.fl_txt_mv We present an approach based on integer programming formulations of the graph coloring problem. Our goal is to develop models that remove some symmetrical solutions obtained by color permutations. We study the problem from a polyhedral point of view and determine some families of facets of the 0/1-polytope associated with one of these integer programming formulations. The theoretical results described here are used to design an efficient Cutting Plane algorithm. © 2007 Elsevier B.V. All rights reserved.
Fil:Méndez-Díaz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Zabala, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We present an approach based on integer programming formulations of the graph coloring problem. Our goal is to develop models that remove some symmetrical solutions obtained by color permutations. We study the problem from a polyhedral point of view and determine some families of facets of the 0/1-polytope associated with one of these integer programming formulations. The theoretical results described here are used to design an efficient Cutting Plane algorithm. © 2007 Elsevier B.V. All rights reserved.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n2_p159_MendezDiaz
url http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n2_p159_MendezDiaz
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Discrete Appl Math 2008;156(2):159-179
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618735480995840
score 13.070432