Keyword extracting using auto-associative neural networks
- Autores
- Aquino, Germán Osvaldo; Hasperué, Waldo; Lanzarini, Laura Cristina
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present a new algorithm for keyword extraction. Its main goal is to extract keywords from text documents written in Spanish quickly and without requiring a large training set. This goal was achieved using auto-associative neural networks, also known as autoencoders, trained using only the terms designated as keywords in the training set, so that these networks can learn the features characterizing the important terms in a document.
XI Workshop Bases de Datos y Minería de Datos
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
keyword extraction
text mining
neural networks
autoencoders - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/42284
Ver los metadatos del registro completo
| id |
SEDICI_3d82ed173fd916dccfe52d5f341caa4b |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/42284 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Keyword extracting using auto-associative neural networksAquino, Germán OsvaldoHasperué, WaldoLanzarini, Laura CristinaCiencias Informáticaskeyword extractiontext miningneural networksautoencodersThe large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present a new algorithm for keyword extraction. Its main goal is to extract keywords from text documents written in Spanish quickly and without requiring a large training set. This goal was achieved using auto-associative neural networks, also known as <i>autoencoders</i>, trained using only the terms designated as keywords in the training set, so that these networks can learn the features characterizing the important terms in a document.XI Workshop Bases de Datos y Minería de DatosRed de Universidades con Carreras en Informática (RedUNCI)2014-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/42284enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T12:41:15Zoai:sedici.unlp.edu.ar:10915/42284Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 12:41:15.86SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Keyword extracting using auto-associative neural networks |
| title |
Keyword extracting using auto-associative neural networks |
| spellingShingle |
Keyword extracting using auto-associative neural networks Aquino, Germán Osvaldo Ciencias Informáticas keyword extraction text mining neural networks autoencoders |
| title_short |
Keyword extracting using auto-associative neural networks |
| title_full |
Keyword extracting using auto-associative neural networks |
| title_fullStr |
Keyword extracting using auto-associative neural networks |
| title_full_unstemmed |
Keyword extracting using auto-associative neural networks |
| title_sort |
Keyword extracting using auto-associative neural networks |
| dc.creator.none.fl_str_mv |
Aquino, Germán Osvaldo Hasperué, Waldo Lanzarini, Laura Cristina |
| author |
Aquino, Germán Osvaldo |
| author_facet |
Aquino, Germán Osvaldo Hasperué, Waldo Lanzarini, Laura Cristina |
| author_role |
author |
| author2 |
Hasperué, Waldo Lanzarini, Laura Cristina |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas keyword extraction text mining neural networks autoencoders |
| topic |
Ciencias Informáticas keyword extraction text mining neural networks autoencoders |
| dc.description.none.fl_txt_mv |
The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present a new algorithm for keyword extraction. Its main goal is to extract keywords from text documents written in Spanish quickly and without requiring a large training set. This goal was achieved using auto-associative neural networks, also known as <i>autoencoders</i>, trained using only the terms designated as keywords in the training set, so that these networks can learn the features characterizing the important terms in a document. XI Workshop Bases de Datos y Minería de Datos Red de Universidades con Carreras en Informática (RedUNCI) |
| description |
The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present a new algorithm for keyword extraction. Its main goal is to extract keywords from text documents written in Spanish quickly and without requiring a large training set. This goal was achieved using auto-associative neural networks, also known as <i>autoencoders</i>, trained using only the terms designated as keywords in the training set, so that these networks can learn the features characterizing the important terms in a document. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/42284 |
| url |
http://sedici.unlp.edu.ar/handle/10915/42284 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1847978436478369792 |
| score |
13.084122 |