Keyword identification in Spanish documents using neural networks
- Autores
- Aquino, Germán Osvaldo; Lanzarini, Laura Cristina
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present an algorithm for keyword extraction from documents written in Spanish.This algorithm combines autoencoders, which are adequate for highly unbalanced classification problems, with the discriminative power of conventional binary classifiers. In order to improve its performance on larger and more diverse datasets, our algorithm trains several models of each kind through bagging.
Facultad de Informática - Materia
-
Ciencias Informáticas
keyword extraction
autoencoders
Neural nets
Redes Neurales (Computación) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/50087
Ver los metadatos del registro completo
id |
SEDICI_f360d041d7b27ea39123d7b6982b9743 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/50087 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Keyword identification in Spanish documents using neural networksAquino, Germán OsvaldoLanzarini, Laura CristinaCiencias Informáticaskeyword extractionautoencodersNeural netsRedes Neurales (Computación)The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present an algorithm for keyword extraction from documents written in Spanish.This algorithm combines autoencoders, which are adequate for highly unbalanced classification problems, with the discriminative power of conventional binary classifiers. In order to improve its performance on larger and more diverse datasets, our algorithm trains several models of each kind through bagging.Facultad de Informática2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf55-60http://sedici.unlp.edu.ar/handle/10915/50087enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST41-Paper-2.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:07:08Zoai:sedici.unlp.edu.ar:10915/50087Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:07:08.361SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Keyword identification in Spanish documents using neural networks |
title |
Keyword identification in Spanish documents using neural networks |
spellingShingle |
Keyword identification in Spanish documents using neural networks Aquino, Germán Osvaldo Ciencias Informáticas keyword extraction autoencoders Neural nets Redes Neurales (Computación) |
title_short |
Keyword identification in Spanish documents using neural networks |
title_full |
Keyword identification in Spanish documents using neural networks |
title_fullStr |
Keyword identification in Spanish documents using neural networks |
title_full_unstemmed |
Keyword identification in Spanish documents using neural networks |
title_sort |
Keyword identification in Spanish documents using neural networks |
dc.creator.none.fl_str_mv |
Aquino, Germán Osvaldo Lanzarini, Laura Cristina |
author |
Aquino, Germán Osvaldo |
author_facet |
Aquino, Germán Osvaldo Lanzarini, Laura Cristina |
author_role |
author |
author2 |
Lanzarini, Laura Cristina |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas keyword extraction autoencoders Neural nets Redes Neurales (Computación) |
topic |
Ciencias Informáticas keyword extraction autoencoders Neural nets Redes Neurales (Computación) |
dc.description.none.fl_txt_mv |
The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present an algorithm for keyword extraction from documents written in Spanish.This algorithm combines autoencoders, which are adequate for highly unbalanced classification problems, with the discriminative power of conventional binary classifiers. In order to improve its performance on larger and more diverse datasets, our algorithm trains several models of each kind through bagging. Facultad de Informática |
description |
The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present an algorithm for keyword extraction from documents written in Spanish.This algorithm combines autoencoders, which are adequate for highly unbalanced classification problems, with the discriminative power of conventional binary classifiers. In order to improve its performance on larger and more diverse datasets, our algorithm trains several models of each kind through bagging. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/50087 |
url |
http://sedici.unlp.edu.ar/handle/10915/50087 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST41-Paper-2.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
dc.format.none.fl_str_mv |
application/pdf 55-60 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842903944827764736 |
score |
12.993085 |