Combining counterpropagation neural networks and defeasible logic programming for text classification

Autores
Gómez, Sergio Alejandro; Chesñevar, Carlos Iván
Año de publicación
2004
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The increasing growth of documents available in the World Wide Web has resulted in a difficult situation for those end-users who search for a particular piece of information. A common approach to facilitate search is to perform document classification first, learning the topology of a document base as a set of clusters. Clusters will be labeled as relevant or irrelevant, and determining whether a new document belongs to a given cluster can help determine whether such document corresponds to the user information needs. We contend that the above clustering technique can be enriched by additional filtering criteria specified in terms of Defeasible Logic Programming (DeLP). In this paper we discuss a combination of Counterpropagation Neural Networks for clustering and DeLP to solve the problem of classifying documents according to user-specified criteria. We present an example of how the proposed approach works.
Eje: Sistemas de información y Metaheurística
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
información
Neural nets
Machine Learning
Defeasible Argumentation
Counterpropagation neural networks
text mining
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/21334

id SEDICI_ebe4efe6f9031966120596136a8f7e72
oai_identifier_str oai:sedici.unlp.edu.ar:10915/21334
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Combining counterpropagation neural networks and defeasible logic programming for text classificationGómez, Sergio AlejandroChesñevar, Carlos IvánCiencias InformáticasARTIFICIAL INTELLIGENCEinformaciónNeural netsMachine LearningDefeasible ArgumentationCounterpropagation neural networkstext miningThe increasing growth of documents available in the World Wide Web has resulted in a difficult situation for those end-users who search for a particular piece of information. A common approach to facilitate search is to perform document classification first, learning the topology of a document base as a set of clusters. Clusters will be labeled as relevant or irrelevant, and determining whether a new document belongs to a given cluster can help determine whether such document corresponds to the user information needs. We contend that the above clustering technique can be enriched by additional filtering criteria specified in terms of Defeasible Logic Programming (DeLP). In this paper we discuss a combination of Counterpropagation Neural Networks for clustering and DeLP to solve the problem of classifying documents according to user-specified criteria. We present an example of how the proposed approach works.Eje: Sistemas de información y MetaheurísticaRed de Universidades con Carreras en Informática (RedUNCI)2004-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf586-591http://sedici.unlp.edu.ar/handle/10915/21334enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:25Zoai:sedici.unlp.edu.ar:10915/21334Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:25.999SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Combining counterpropagation neural networks and defeasible logic programming for text classification
title Combining counterpropagation neural networks and defeasible logic programming for text classification
spellingShingle Combining counterpropagation neural networks and defeasible logic programming for text classification
Gómez, Sergio Alejandro
Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
información
Neural nets
Machine Learning
Defeasible Argumentation
Counterpropagation neural networks
text mining
title_short Combining counterpropagation neural networks and defeasible logic programming for text classification
title_full Combining counterpropagation neural networks and defeasible logic programming for text classification
title_fullStr Combining counterpropagation neural networks and defeasible logic programming for text classification
title_full_unstemmed Combining counterpropagation neural networks and defeasible logic programming for text classification
title_sort Combining counterpropagation neural networks and defeasible logic programming for text classification
dc.creator.none.fl_str_mv Gómez, Sergio Alejandro
Chesñevar, Carlos Iván
author Gómez, Sergio Alejandro
author_facet Gómez, Sergio Alejandro
Chesñevar, Carlos Iván
author_role author
author2 Chesñevar, Carlos Iván
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
información
Neural nets
Machine Learning
Defeasible Argumentation
Counterpropagation neural networks
text mining
topic Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
información
Neural nets
Machine Learning
Defeasible Argumentation
Counterpropagation neural networks
text mining
dc.description.none.fl_txt_mv The increasing growth of documents available in the World Wide Web has resulted in a difficult situation for those end-users who search for a particular piece of information. A common approach to facilitate search is to perform document classification first, learning the topology of a document base as a set of clusters. Clusters will be labeled as relevant or irrelevant, and determining whether a new document belongs to a given cluster can help determine whether such document corresponds to the user information needs. We contend that the above clustering technique can be enriched by additional filtering criteria specified in terms of Defeasible Logic Programming (DeLP). In this paper we discuss a combination of Counterpropagation Neural Networks for clustering and DeLP to solve the problem of classifying documents according to user-specified criteria. We present an example of how the proposed approach works.
Eje: Sistemas de información y Metaheurística
Red de Universidades con Carreras en Informática (RedUNCI)
description The increasing growth of documents available in the World Wide Web has resulted in a difficult situation for those end-users who search for a particular piece of information. A common approach to facilitate search is to perform document classification first, learning the topology of a document base as a set of clusters. Clusters will be labeled as relevant or irrelevant, and determining whether a new document belongs to a given cluster can help determine whether such document corresponds to the user information needs. We contend that the above clustering technique can be enriched by additional filtering criteria specified in terms of Defeasible Logic Programming (DeLP). In this paper we discuss a combination of Counterpropagation Neural Networks for clustering and DeLP to solve the problem of classifying documents according to user-specified criteria. We present an example of how the proposed approach works.
publishDate 2004
dc.date.none.fl_str_mv 2004-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/21334
url http://sedici.unlp.edu.ar/handle/10915/21334
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
586-591
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260111850995712
score 13.13397