Combining counterpropagation neural networks and defeasible logic programming for text classification
- Autores
- Gómez, Sergio Alejandro; Chesñevar, Carlos Iván
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The increasing growth of documents available in the World Wide Web has resulted in a difficult situation for those end-users who search for a particular piece of information. A common approach to facilitate search is to perform document classification first, learning the topology of a document base as a set of clusters. Clusters will be labeled as relevant or irrelevant, and determining whether a new document belongs to a given cluster can help determine whether such document corresponds to the user information needs. We contend that the above clustering technique can be enriched by additional filtering criteria specified in terms of Defeasible Logic Programming (DeLP). In this paper we discuss a combination of Counterpropagation Neural Networks for clustering and DeLP to solve the problem of classifying documents according to user-specified criteria. We present an example of how the proposed approach works.
Eje: Sistemas de información y Metaheurística
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
información
Neural nets
Machine Learning
Defeasible Argumentation
Counterpropagation neural networks
text mining - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21334
Ver los metadatos del registro completo
id |
SEDICI_ebe4efe6f9031966120596136a8f7e72 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21334 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Combining counterpropagation neural networks and defeasible logic programming for text classificationGómez, Sergio AlejandroChesñevar, Carlos IvánCiencias InformáticasARTIFICIAL INTELLIGENCEinformaciónNeural netsMachine LearningDefeasible ArgumentationCounterpropagation neural networkstext miningThe increasing growth of documents available in the World Wide Web has resulted in a difficult situation for those end-users who search for a particular piece of information. A common approach to facilitate search is to perform document classification first, learning the topology of a document base as a set of clusters. Clusters will be labeled as relevant or irrelevant, and determining whether a new document belongs to a given cluster can help determine whether such document corresponds to the user information needs. We contend that the above clustering technique can be enriched by additional filtering criteria specified in terms of Defeasible Logic Programming (DeLP). In this paper we discuss a combination of Counterpropagation Neural Networks for clustering and DeLP to solve the problem of classifying documents according to user-specified criteria. We present an example of how the proposed approach works.Eje: Sistemas de información y MetaheurísticaRed de Universidades con Carreras en Informática (RedUNCI)2004-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf586-591http://sedici.unlp.edu.ar/handle/10915/21334enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:25Zoai:sedici.unlp.edu.ar:10915/21334Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:25.999SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Combining counterpropagation neural networks and defeasible logic programming for text classification |
title |
Combining counterpropagation neural networks and defeasible logic programming for text classification |
spellingShingle |
Combining counterpropagation neural networks and defeasible logic programming for text classification Gómez, Sergio Alejandro Ciencias Informáticas ARTIFICIAL INTELLIGENCE información Neural nets Machine Learning Defeasible Argumentation Counterpropagation neural networks text mining |
title_short |
Combining counterpropagation neural networks and defeasible logic programming for text classification |
title_full |
Combining counterpropagation neural networks and defeasible logic programming for text classification |
title_fullStr |
Combining counterpropagation neural networks and defeasible logic programming for text classification |
title_full_unstemmed |
Combining counterpropagation neural networks and defeasible logic programming for text classification |
title_sort |
Combining counterpropagation neural networks and defeasible logic programming for text classification |
dc.creator.none.fl_str_mv |
Gómez, Sergio Alejandro Chesñevar, Carlos Iván |
author |
Gómez, Sergio Alejandro |
author_facet |
Gómez, Sergio Alejandro Chesñevar, Carlos Iván |
author_role |
author |
author2 |
Chesñevar, Carlos Iván |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas ARTIFICIAL INTELLIGENCE información Neural nets Machine Learning Defeasible Argumentation Counterpropagation neural networks text mining |
topic |
Ciencias Informáticas ARTIFICIAL INTELLIGENCE información Neural nets Machine Learning Defeasible Argumentation Counterpropagation neural networks text mining |
dc.description.none.fl_txt_mv |
The increasing growth of documents available in the World Wide Web has resulted in a difficult situation for those end-users who search for a particular piece of information. A common approach to facilitate search is to perform document classification first, learning the topology of a document base as a set of clusters. Clusters will be labeled as relevant or irrelevant, and determining whether a new document belongs to a given cluster can help determine whether such document corresponds to the user information needs. We contend that the above clustering technique can be enriched by additional filtering criteria specified in terms of Defeasible Logic Programming (DeLP). In this paper we discuss a combination of Counterpropagation Neural Networks for clustering and DeLP to solve the problem of classifying documents according to user-specified criteria. We present an example of how the proposed approach works. Eje: Sistemas de información y Metaheurística Red de Universidades con Carreras en Informática (RedUNCI) |
description |
The increasing growth of documents available in the World Wide Web has resulted in a difficult situation for those end-users who search for a particular piece of information. A common approach to facilitate search is to perform document classification first, learning the topology of a document base as a set of clusters. Clusters will be labeled as relevant or irrelevant, and determining whether a new document belongs to a given cluster can help determine whether such document corresponds to the user information needs. We contend that the above clustering technique can be enriched by additional filtering criteria specified in terms of Defeasible Logic Programming (DeLP). In this paper we discuss a combination of Counterpropagation Neural Networks for clustering and DeLP to solve the problem of classifying documents according to user-specified criteria. We present an example of how the proposed approach works. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21334 |
url |
http://sedici.unlp.edu.ar/handle/10915/21334 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 586-591 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260111850995712 |
score |
13.13397 |