Keyword Identification in Spanish Documents
- Autores
- Aquino, Germán Osvaldo; Lanzarini, Laura Cristina
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present an algorithm for keyword extraction from documents written in Spanish.This algorithm combines autoencoders, which are adequate for highly unbalanced classification problems, with the discriminative power of conventional binary classifiers. In order to improve its performance on larger and more diverse datasets, our algorithm trains several models of each kind through bagging.
Fil: Aquino, Germán Osvaldo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lanzarini, Laura Cristina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
KEYWORD EXTRACTION
NEURAL NETWORKS
AUTOENCODERS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/57325
Ver los metadatos del registro completo
id |
CONICETDig_1329197f5e7752b54ad295093e5d8036 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/57325 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Keyword Identification in Spanish DocumentsAquino, Germán OsvaldoLanzarini, Laura CristinaKEYWORD EXTRACTIONNEURAL NETWORKSAUTOENCODERShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present an algorithm for keyword extraction from documents written in Spanish.This algorithm combines autoencoders, which are adequate for highly unbalanced classification problems, with the discriminative power of conventional binary classifiers. In order to improve its performance on larger and more diverse datasets, our algorithm trains several models of each kind through bagging.Fil: Aquino, Germán Osvaldo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lanzarini, Laura Cristina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUniversidad Nacional de La Plata. Facultad de Informática2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57325Aquino, Germán Osvaldo; Lanzarini, Laura Cristina; Keyword Identification in Spanish Documents; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 15; 2; 12-2015; 55-601666-60461666-6038CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/554info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:33:32Zoai:ri.conicet.gov.ar:11336/57325instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:33:32.326CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Keyword Identification in Spanish Documents |
title |
Keyword Identification in Spanish Documents |
spellingShingle |
Keyword Identification in Spanish Documents Aquino, Germán Osvaldo KEYWORD EXTRACTION NEURAL NETWORKS AUTOENCODERS |
title_short |
Keyword Identification in Spanish Documents |
title_full |
Keyword Identification in Spanish Documents |
title_fullStr |
Keyword Identification in Spanish Documents |
title_full_unstemmed |
Keyword Identification in Spanish Documents |
title_sort |
Keyword Identification in Spanish Documents |
dc.creator.none.fl_str_mv |
Aquino, Germán Osvaldo Lanzarini, Laura Cristina |
author |
Aquino, Germán Osvaldo |
author_facet |
Aquino, Germán Osvaldo Lanzarini, Laura Cristina |
author_role |
author |
author2 |
Lanzarini, Laura Cristina |
author2_role |
author |
dc.subject.none.fl_str_mv |
KEYWORD EXTRACTION NEURAL NETWORKS AUTOENCODERS |
topic |
KEYWORD EXTRACTION NEURAL NETWORKS AUTOENCODERS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present an algorithm for keyword extraction from documents written in Spanish.This algorithm combines autoencoders, which are adequate for highly unbalanced classification problems, with the discriminative power of conventional binary classifiers. In order to improve its performance on larger and more diverse datasets, our algorithm trains several models of each kind through bagging. Fil: Aquino, Germán Osvaldo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lanzarini, Laura Cristina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present an algorithm for keyword extraction from documents written in Spanish.This algorithm combines autoencoders, which are adequate for highly unbalanced classification problems, with the discriminative power of conventional binary classifiers. In order to improve its performance on larger and more diverse datasets, our algorithm trains several models of each kind through bagging. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/57325 Aquino, Germán Osvaldo; Lanzarini, Laura Cristina; Keyword Identification in Spanish Documents; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 15; 2; 12-2015; 55-60 1666-6046 1666-6038 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/57325 |
identifier_str_mv |
Aquino, Germán Osvaldo; Lanzarini, Laura Cristina; Keyword Identification in Spanish Documents; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 15; 2; 12-2015; 55-60 1666-6046 1666-6038 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/554 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Informática |
publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Informática |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606696910389248 |
score |
13.000565 |