Modelos, algoritmos y aplicaciones en búsquedas a gran escala
- Autores
- Tolosa, Gabriel Hernán; Marrone, Agustín; Giordano, Andrés; González, Agustín; Jurán, Tomás; Ríssola, Esteban A.
- Año de publicación
- 2020
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- La publicación de información digital crece día a día a tasas exponenciales. Esto exige mayores capacidades de hardware a los proveedores de servicios, e impone restricciones a los usuarios en cuanto a la facilidad de acceso. Además, teniendo en cuenta que los usuarios requieren información relevante lo más rápido posible, la alta tasa de aparición de contenido desafía a las herramientas de búsqueda, las cuales deben considerar y manejar eficientemente el tamaño, la complejidad y el dinamismo de las fuentes actuales de información digital. En el caso del procesamiento de colecciones masivas de documentos, uno de los desafíos en cuanto a la eficiencia está dado por analizar la menor cantidad de documentos posible para satisfacer una consulta. Por otro lado, si los documentos ocurren en tiempo real (flujos) se requieren estrategias eficientes de ruteo hacia los nodos de búsquedas y de indexación incremental. Estos problemas requieren, en general, procesamiento distribuido, paralelo y algoritmos altamente eficientes. En la mayoría de los casos, la partición del problema y la distribución de la carga de trabajo son aspectos de las estrategias que requieren ser optimizados de acuerdo al problema.
Eje: Base de Datos y Minería de Datos.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Algoritmos eficientes
Motor de Búsqueda
Estructuras de datos
Grandes datos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/103649
Ver los metadatos del registro completo
id |
SEDICI_3d1c19673d803daaa0c759ba55980694 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/103649 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Modelos, algoritmos y aplicaciones en búsquedas a gran escalaTolosa, Gabriel HernánMarrone, AgustínGiordano, AndrésGonzález, AgustínJurán, TomásRíssola, Esteban A.Ciencias InformáticasAlgoritmos eficientesMotor de BúsquedaEstructuras de datosGrandes datosLa publicación de información digital crece día a día a tasas exponenciales. Esto exige mayores capacidades de hardware a los proveedores de servicios, e impone restricciones a los usuarios en cuanto a la facilidad de acceso. Además, teniendo en cuenta que los usuarios requieren información relevante lo más rápido posible, la alta tasa de aparición de contenido desafía a las herramientas de búsqueda, las cuales deben considerar y manejar eficientemente el tamaño, la complejidad y el dinamismo de las fuentes actuales de información digital. En el caso del procesamiento de colecciones masivas de documentos, uno de los desafíos en cuanto a la eficiencia está dado por analizar la menor cantidad de documentos posible para satisfacer una consulta. Por otro lado, si los documentos ocurren en tiempo real (flujos) se requieren estrategias eficientes de ruteo hacia los nodos de búsquedas y de indexación incremental. Estos problemas requieren, en general, procesamiento distribuido, paralelo y algoritmos altamente eficientes. En la mayoría de los casos, la partición del problema y la distribución de la carga de trabajo son aspectos de las estrategias que requieren ser optimizados de acuerdo al problema.Eje: Base de Datos y Minería de Datos.Red de Universidades con Carreras en Informática2020-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf210-215http://sedici.unlp.edu.ar/handle/10915/103649spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-3714-82-5info:eu-repo/semantics/reference/hdl/10915/103151info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:03:26Zoai:sedici.unlp.edu.ar:10915/103649Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:03:26.254SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Modelos, algoritmos y aplicaciones en búsquedas a gran escala |
title |
Modelos, algoritmos y aplicaciones en búsquedas a gran escala |
spellingShingle |
Modelos, algoritmos y aplicaciones en búsquedas a gran escala Tolosa, Gabriel Hernán Ciencias Informáticas Algoritmos eficientes Motor de Búsqueda Estructuras de datos Grandes datos |
title_short |
Modelos, algoritmos y aplicaciones en búsquedas a gran escala |
title_full |
Modelos, algoritmos y aplicaciones en búsquedas a gran escala |
title_fullStr |
Modelos, algoritmos y aplicaciones en búsquedas a gran escala |
title_full_unstemmed |
Modelos, algoritmos y aplicaciones en búsquedas a gran escala |
title_sort |
Modelos, algoritmos y aplicaciones en búsquedas a gran escala |
dc.creator.none.fl_str_mv |
Tolosa, Gabriel Hernán Marrone, Agustín Giordano, Andrés González, Agustín Jurán, Tomás Ríssola, Esteban A. |
author |
Tolosa, Gabriel Hernán |
author_facet |
Tolosa, Gabriel Hernán Marrone, Agustín Giordano, Andrés González, Agustín Jurán, Tomás Ríssola, Esteban A. |
author_role |
author |
author2 |
Marrone, Agustín Giordano, Andrés González, Agustín Jurán, Tomás Ríssola, Esteban A. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Algoritmos eficientes Motor de Búsqueda Estructuras de datos Grandes datos |
topic |
Ciencias Informáticas Algoritmos eficientes Motor de Búsqueda Estructuras de datos Grandes datos |
dc.description.none.fl_txt_mv |
La publicación de información digital crece día a día a tasas exponenciales. Esto exige mayores capacidades de hardware a los proveedores de servicios, e impone restricciones a los usuarios en cuanto a la facilidad de acceso. Además, teniendo en cuenta que los usuarios requieren información relevante lo más rápido posible, la alta tasa de aparición de contenido desafía a las herramientas de búsqueda, las cuales deben considerar y manejar eficientemente el tamaño, la complejidad y el dinamismo de las fuentes actuales de información digital. En el caso del procesamiento de colecciones masivas de documentos, uno de los desafíos en cuanto a la eficiencia está dado por analizar la menor cantidad de documentos posible para satisfacer una consulta. Por otro lado, si los documentos ocurren en tiempo real (flujos) se requieren estrategias eficientes de ruteo hacia los nodos de búsquedas y de indexación incremental. Estos problemas requieren, en general, procesamiento distribuido, paralelo y algoritmos altamente eficientes. En la mayoría de los casos, la partición del problema y la distribución de la carga de trabajo son aspectos de las estrategias que requieren ser optimizados de acuerdo al problema. Eje: Base de Datos y Minería de Datos. Red de Universidades con Carreras en Informática |
description |
La publicación de información digital crece día a día a tasas exponenciales. Esto exige mayores capacidades de hardware a los proveedores de servicios, e impone restricciones a los usuarios en cuanto a la facilidad de acceso. Además, teniendo en cuenta que los usuarios requieren información relevante lo más rápido posible, la alta tasa de aparición de contenido desafía a las herramientas de búsqueda, las cuales deben considerar y manejar eficientemente el tamaño, la complejidad y el dinamismo de las fuentes actuales de información digital. En el caso del procesamiento de colecciones masivas de documentos, uno de los desafíos en cuanto a la eficiencia está dado por analizar la menor cantidad de documentos posible para satisfacer una consulta. Por otro lado, si los documentos ocurren en tiempo real (flujos) se requieren estrategias eficientes de ruteo hacia los nodos de búsquedas y de indexación incremental. Estos problemas requieren, en general, procesamiento distribuido, paralelo y algoritmos altamente eficientes. En la mayoría de los casos, la partición del problema y la distribución de la carga de trabajo son aspectos de las estrategias que requieren ser optimizados de acuerdo al problema. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/103649 |
url |
http://sedici.unlp.edu.ar/handle/10915/103649 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-3714-82-5 info:eu-repo/semantics/reference/hdl/10915/103151 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 210-215 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846783299725295616 |
score |
12.6884985 |