An approach to support generic topologies in distributed PSO algorithms in Spark
- Autores
- Pardo, Xoán C.; González, Patricia; Banga, Julio R.; Doallo, Ramón
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Particle Swarm Optimization (PSO) is a popular population-based search algorithm that has been applied to all kinds of complex optimization problems. Although the performance of the algorithm strongly depends on the social topology that determines the interaction between the particles during the search, current Metaheuristic Optimization Frameworks (MOFs) provide limited support for topologies. In this paper, we present an approach to support generic topologies in distributed PSO algorithms within a framework for the development and execution of populationbased metaheuristics in Spark, which is currently under development.
Facultad de Informática - Materia
-
Ciencias Informáticas
Particle Swarm Optimization
Metaheuristic Optimization Frameworks
Social topology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/155416
Ver los metadatos del registro completo
id |
SEDICI_394046fe7d5600cf32c4ecad2fe35ce9 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/155416 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
An approach to support generic topologies in distributed PSO algorithms in SparkPardo, Xoán C.González, PatriciaBanga, Julio R.Doallo, RamónCiencias InformáticasParticle Swarm OptimizationMetaheuristic Optimization FrameworksSocial topologyParticle Swarm Optimization (PSO) is a popular population-based search algorithm that has been applied to all kinds of complex optimization problems. Although the performance of the algorithm strongly depends on the social topology that determines the interaction between the particles during the search, current Metaheuristic Optimization Frameworks (MOFs) provide limited support for topologies. In this paper, we present an approach to support generic topologies in distributed PSO algorithms within a framework for the development and execution of populationbased metaheuristics in Spark, which is currently under development.Facultad de Informática2023-06info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf2-7http://sedici.unlp.edu.ar/handle/10915/155416enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2271-7info:eu-repo/semantics/reference/hdl/10915/155281info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:12:20Zoai:sedici.unlp.edu.ar:10915/155416Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:12:20.808SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
An approach to support generic topologies in distributed PSO algorithms in Spark |
title |
An approach to support generic topologies in distributed PSO algorithms in Spark |
spellingShingle |
An approach to support generic topologies in distributed PSO algorithms in Spark Pardo, Xoán C. Ciencias Informáticas Particle Swarm Optimization Metaheuristic Optimization Frameworks Social topology |
title_short |
An approach to support generic topologies in distributed PSO algorithms in Spark |
title_full |
An approach to support generic topologies in distributed PSO algorithms in Spark |
title_fullStr |
An approach to support generic topologies in distributed PSO algorithms in Spark |
title_full_unstemmed |
An approach to support generic topologies in distributed PSO algorithms in Spark |
title_sort |
An approach to support generic topologies in distributed PSO algorithms in Spark |
dc.creator.none.fl_str_mv |
Pardo, Xoán C. González, Patricia Banga, Julio R. Doallo, Ramón |
author |
Pardo, Xoán C. |
author_facet |
Pardo, Xoán C. González, Patricia Banga, Julio R. Doallo, Ramón |
author_role |
author |
author2 |
González, Patricia Banga, Julio R. Doallo, Ramón |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Particle Swarm Optimization Metaheuristic Optimization Frameworks Social topology |
topic |
Ciencias Informáticas Particle Swarm Optimization Metaheuristic Optimization Frameworks Social topology |
dc.description.none.fl_txt_mv |
Particle Swarm Optimization (PSO) is a popular population-based search algorithm that has been applied to all kinds of complex optimization problems. Although the performance of the algorithm strongly depends on the social topology that determines the interaction between the particles during the search, current Metaheuristic Optimization Frameworks (MOFs) provide limited support for topologies. In this paper, we present an approach to support generic topologies in distributed PSO algorithms within a framework for the development and execution of populationbased metaheuristics in Spark, which is currently under development. Facultad de Informática |
description |
Particle Swarm Optimization (PSO) is a popular population-based search algorithm that has been applied to all kinds of complex optimization problems. Although the performance of the algorithm strongly depends on the social topology that determines the interaction between the particles during the search, current Metaheuristic Optimization Frameworks (MOFs) provide limited support for topologies. In this paper, we present an approach to support generic topologies in distributed PSO algorithms within a framework for the development and execution of populationbased metaheuristics in Spark, which is currently under development. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/155416 |
url |
http://sedici.unlp.edu.ar/handle/10915/155416 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2271-7 info:eu-repo/semantics/reference/hdl/10915/155281 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 2-7 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260627721027584 |
score |
13.13397 |