An approach to support generic topologies in distributed PSO algorithms in Spark

Autores
Pardo, Xoán C.; González, Patricia; Banga, Julio R.; Doallo, Ramón
Año de publicación
2023
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Particle Swarm Optimization (PSO) is a popular population-based search algorithm that has been applied to all kinds of complex optimization problems. Although the performance of the algorithm strongly depends on the social topology that determines the interaction between the particles during the search, current Metaheuristic Optimization Frameworks (MOFs) provide limited support for topologies. In this paper, we present an approach to support generic topologies in distributed PSO algorithms within a framework for the development and execution of populationbased metaheuristics in Spark, which is currently under development.
Facultad de Informática
Materia
Ciencias Informáticas
Particle Swarm Optimization
Metaheuristic Optimization Frameworks
Social topology
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/155416

id SEDICI_394046fe7d5600cf32c4ecad2fe35ce9
oai_identifier_str oai:sedici.unlp.edu.ar:10915/155416
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling An approach to support generic topologies in distributed PSO algorithms in SparkPardo, Xoán C.González, PatriciaBanga, Julio R.Doallo, RamónCiencias InformáticasParticle Swarm OptimizationMetaheuristic Optimization FrameworksSocial topologyParticle Swarm Optimization (PSO) is a popular population-based search algorithm that has been applied to all kinds of complex optimization problems. Although the performance of the algorithm strongly depends on the social topology that determines the interaction between the particles during the search, current Metaheuristic Optimization Frameworks (MOFs) provide limited support for topologies. In this paper, we present an approach to support generic topologies in distributed PSO algorithms within a framework for the development and execution of populationbased metaheuristics in Spark, which is currently under development.Facultad de Informática2023-06info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf2-7http://sedici.unlp.edu.ar/handle/10915/155416enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2271-7info:eu-repo/semantics/reference/hdl/10915/155281info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:12:20Zoai:sedici.unlp.edu.ar:10915/155416Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:12:20.808SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv An approach to support generic topologies in distributed PSO algorithms in Spark
title An approach to support generic topologies in distributed PSO algorithms in Spark
spellingShingle An approach to support generic topologies in distributed PSO algorithms in Spark
Pardo, Xoán C.
Ciencias Informáticas
Particle Swarm Optimization
Metaheuristic Optimization Frameworks
Social topology
title_short An approach to support generic topologies in distributed PSO algorithms in Spark
title_full An approach to support generic topologies in distributed PSO algorithms in Spark
title_fullStr An approach to support generic topologies in distributed PSO algorithms in Spark
title_full_unstemmed An approach to support generic topologies in distributed PSO algorithms in Spark
title_sort An approach to support generic topologies in distributed PSO algorithms in Spark
dc.creator.none.fl_str_mv Pardo, Xoán C.
González, Patricia
Banga, Julio R.
Doallo, Ramón
author Pardo, Xoán C.
author_facet Pardo, Xoán C.
González, Patricia
Banga, Julio R.
Doallo, Ramón
author_role author
author2 González, Patricia
Banga, Julio R.
Doallo, Ramón
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Particle Swarm Optimization
Metaheuristic Optimization Frameworks
Social topology
topic Ciencias Informáticas
Particle Swarm Optimization
Metaheuristic Optimization Frameworks
Social topology
dc.description.none.fl_txt_mv Particle Swarm Optimization (PSO) is a popular population-based search algorithm that has been applied to all kinds of complex optimization problems. Although the performance of the algorithm strongly depends on the social topology that determines the interaction between the particles during the search, current Metaheuristic Optimization Frameworks (MOFs) provide limited support for topologies. In this paper, we present an approach to support generic topologies in distributed PSO algorithms within a framework for the development and execution of populationbased metaheuristics in Spark, which is currently under development.
Facultad de Informática
description Particle Swarm Optimization (PSO) is a popular population-based search algorithm that has been applied to all kinds of complex optimization problems. Although the performance of the algorithm strongly depends on the social topology that determines the interaction between the particles during the search, current Metaheuristic Optimization Frameworks (MOFs) provide limited support for topologies. In this paper, we present an approach to support generic topologies in distributed PSO algorithms within a framework for the development and execution of populationbased metaheuristics in Spark, which is currently under development.
publishDate 2023
dc.date.none.fl_str_mv 2023-06
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/155416
url http://sedici.unlp.edu.ar/handle/10915/155416
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2271-7
info:eu-repo/semantics/reference/hdl/10915/155281
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
2-7
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260627721027584
score 13.13397