Particle Swarm Algorithms to solve engineering problems: a comparison of performance

Autores
Tomassetti, Giordano; Cagnina, Leticia Cecilia
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In many disciplines, the use of evolutionary algorithms to perform optimizations is limited because of the extensive number of objective evaluations required. In fact, in real-world problems, each objective evaluation is frequently obtained by time-expensive numerical calculations. On the other hand, gradient-based algorithms are able to identify optima with a reduced number of objective evaluations, but they have limited exploration capabilities of the search domain and some restrictions when dealing with noncontinuous functions. In this paper, two PSO-based algorithms are compared to evaluate their pros and cons with respect to the effort required to find acceptable solutions. The algorithms implement two different methodologies to solve widely used engineering benchmark problems. Comparison is made both in terms of fixed iterations tests to judge the solution quality reached and fixed threshold to evaluate how quickly each algorithm reaches near-optimal solutions. The results indicate that one PSO algorithm achieves better solutions than the other one in fixed iterations tests, and the latter achieves acceptable results in less-function evaluations with respect to the first PSO in the case of fixed threshold tests.
Fil: Tomassetti, Giordano. Centro Ricerche Frascati; Italia
Fil: Cagnina, Leticia Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; Argentina
Materia
OPTIMIZATION
PARTICLE SWARM OPTIMIZATION
ENGINEERING PROBLEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/7464

id CONICETDig_637cc9a99453f6a079757c94415c0ebd
oai_identifier_str oai:ri.conicet.gov.ar:11336/7464
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Particle Swarm Algorithms to solve engineering problems: a comparison of performanceTomassetti, GiordanoCagnina, Leticia CeciliaOPTIMIZATIONPARTICLE SWARM OPTIMIZATIONENGINEERING PROBLEMShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In many disciplines, the use of evolutionary algorithms to perform optimizations is limited because of the extensive number of objective evaluations required. In fact, in real-world problems, each objective evaluation is frequently obtained by time-expensive numerical calculations. On the other hand, gradient-based algorithms are able to identify optima with a reduced number of objective evaluations, but they have limited exploration capabilities of the search domain and some restrictions when dealing with noncontinuous functions. In this paper, two PSO-based algorithms are compared to evaluate their pros and cons with respect to the effort required to find acceptable solutions. The algorithms implement two different methodologies to solve widely used engineering benchmark problems. Comparison is made both in terms of fixed iterations tests to judge the solution quality reached and fixed threshold to evaluate how quickly each algorithm reaches near-optimal solutions. The results indicate that one PSO algorithm achieves better solutions than the other one in fixed iterations tests, and the latter achieves acceptable results in less-function evaluations with respect to the first PSO in the case of fixed threshold tests.Fil: Tomassetti, Giordano. Centro Ricerche Frascati; ItaliaFil: Cagnina, Leticia Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; ArgentinaHindawi Publishing Corporation2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7464Tomassetti, Giordano; Cagnina, Leticia Cecilia; Particle Swarm Algorithms to solve engineering problems: a comparison of performance; Hindawi Publishing Corporation; Journal of Engineering; 2013; 2-2013; 1-132314-4912enginfo:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/je/2013/435104/info:eu-repo/semantics/altIdentifier/doi/10.1155/2013/435104info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:39Zoai:ri.conicet.gov.ar:11336/7464instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:39.535CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Particle Swarm Algorithms to solve engineering problems: a comparison of performance
title Particle Swarm Algorithms to solve engineering problems: a comparison of performance
spellingShingle Particle Swarm Algorithms to solve engineering problems: a comparison of performance
Tomassetti, Giordano
OPTIMIZATION
PARTICLE SWARM OPTIMIZATION
ENGINEERING PROBLEMS
title_short Particle Swarm Algorithms to solve engineering problems: a comparison of performance
title_full Particle Swarm Algorithms to solve engineering problems: a comparison of performance
title_fullStr Particle Swarm Algorithms to solve engineering problems: a comparison of performance
title_full_unstemmed Particle Swarm Algorithms to solve engineering problems: a comparison of performance
title_sort Particle Swarm Algorithms to solve engineering problems: a comparison of performance
dc.creator.none.fl_str_mv Tomassetti, Giordano
Cagnina, Leticia Cecilia
author Tomassetti, Giordano
author_facet Tomassetti, Giordano
Cagnina, Leticia Cecilia
author_role author
author2 Cagnina, Leticia Cecilia
author2_role author
dc.subject.none.fl_str_mv OPTIMIZATION
PARTICLE SWARM OPTIMIZATION
ENGINEERING PROBLEMS
topic OPTIMIZATION
PARTICLE SWARM OPTIMIZATION
ENGINEERING PROBLEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In many disciplines, the use of evolutionary algorithms to perform optimizations is limited because of the extensive number of objective evaluations required. In fact, in real-world problems, each objective evaluation is frequently obtained by time-expensive numerical calculations. On the other hand, gradient-based algorithms are able to identify optima with a reduced number of objective evaluations, but they have limited exploration capabilities of the search domain and some restrictions when dealing with noncontinuous functions. In this paper, two PSO-based algorithms are compared to evaluate their pros and cons with respect to the effort required to find acceptable solutions. The algorithms implement two different methodologies to solve widely used engineering benchmark problems. Comparison is made both in terms of fixed iterations tests to judge the solution quality reached and fixed threshold to evaluate how quickly each algorithm reaches near-optimal solutions. The results indicate that one PSO algorithm achieves better solutions than the other one in fixed iterations tests, and the latter achieves acceptable results in less-function evaluations with respect to the first PSO in the case of fixed threshold tests.
Fil: Tomassetti, Giordano. Centro Ricerche Frascati; Italia
Fil: Cagnina, Leticia Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; Argentina
description In many disciplines, the use of evolutionary algorithms to perform optimizations is limited because of the extensive number of objective evaluations required. In fact, in real-world problems, each objective evaluation is frequently obtained by time-expensive numerical calculations. On the other hand, gradient-based algorithms are able to identify optima with a reduced number of objective evaluations, but they have limited exploration capabilities of the search domain and some restrictions when dealing with noncontinuous functions. In this paper, two PSO-based algorithms are compared to evaluate their pros and cons with respect to the effort required to find acceptable solutions. The algorithms implement two different methodologies to solve widely used engineering benchmark problems. Comparison is made both in terms of fixed iterations tests to judge the solution quality reached and fixed threshold to evaluate how quickly each algorithm reaches near-optimal solutions. The results indicate that one PSO algorithm achieves better solutions than the other one in fixed iterations tests, and the latter achieves acceptable results in less-function evaluations with respect to the first PSO in the case of fixed threshold tests.
publishDate 2013
dc.date.none.fl_str_mv 2013-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/7464
Tomassetti, Giordano; Cagnina, Leticia Cecilia; Particle Swarm Algorithms to solve engineering problems: a comparison of performance; Hindawi Publishing Corporation; Journal of Engineering; 2013; 2-2013; 1-13
2314-4912
url http://hdl.handle.net/11336/7464
identifier_str_mv Tomassetti, Giordano; Cagnina, Leticia Cecilia; Particle Swarm Algorithms to solve engineering problems: a comparison of performance; Hindawi Publishing Corporation; Journal of Engineering; 2013; 2-2013; 1-13
2314-4912
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/je/2013/435104/
info:eu-repo/semantics/altIdentifier/doi/10.1155/2013/435104
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Hindawi Publishing Corporation
publisher.none.fl_str_mv Hindawi Publishing Corporation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613746555617280
score 13.070432