Particle Swarm Algorithms to solve engineering problems: a comparison of performance
- Autores
- Tomassetti, Giordano; Cagnina, Leticia Cecilia
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In many disciplines, the use of evolutionary algorithms to perform optimizations is limited because of the extensive number of objective evaluations required. In fact, in real-world problems, each objective evaluation is frequently obtained by time-expensive numerical calculations. On the other hand, gradient-based algorithms are able to identify optima with a reduced number of objective evaluations, but they have limited exploration capabilities of the search domain and some restrictions when dealing with noncontinuous functions. In this paper, two PSO-based algorithms are compared to evaluate their pros and cons with respect to the effort required to find acceptable solutions. The algorithms implement two different methodologies to solve widely used engineering benchmark problems. Comparison is made both in terms of fixed iterations tests to judge the solution quality reached and fixed threshold to evaluate how quickly each algorithm reaches near-optimal solutions. The results indicate that one PSO algorithm achieves better solutions than the other one in fixed iterations tests, and the latter achieves acceptable results in less-function evaluations with respect to the first PSO in the case of fixed threshold tests.
Fil: Tomassetti, Giordano. Centro Ricerche Frascati; Italia
Fil: Cagnina, Leticia Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; Argentina - Materia
-
OPTIMIZATION
PARTICLE SWARM OPTIMIZATION
ENGINEERING PROBLEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/7464
Ver los metadatos del registro completo
id |
CONICETDig_637cc9a99453f6a079757c94415c0ebd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/7464 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Particle Swarm Algorithms to solve engineering problems: a comparison of performanceTomassetti, GiordanoCagnina, Leticia CeciliaOPTIMIZATIONPARTICLE SWARM OPTIMIZATIONENGINEERING PROBLEMShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In many disciplines, the use of evolutionary algorithms to perform optimizations is limited because of the extensive number of objective evaluations required. In fact, in real-world problems, each objective evaluation is frequently obtained by time-expensive numerical calculations. On the other hand, gradient-based algorithms are able to identify optima with a reduced number of objective evaluations, but they have limited exploration capabilities of the search domain and some restrictions when dealing with noncontinuous functions. In this paper, two PSO-based algorithms are compared to evaluate their pros and cons with respect to the effort required to find acceptable solutions. The algorithms implement two different methodologies to solve widely used engineering benchmark problems. Comparison is made both in terms of fixed iterations tests to judge the solution quality reached and fixed threshold to evaluate how quickly each algorithm reaches near-optimal solutions. The results indicate that one PSO algorithm achieves better solutions than the other one in fixed iterations tests, and the latter achieves acceptable results in less-function evaluations with respect to the first PSO in the case of fixed threshold tests.Fil: Tomassetti, Giordano. Centro Ricerche Frascati; ItaliaFil: Cagnina, Leticia Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; ArgentinaHindawi Publishing Corporation2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7464Tomassetti, Giordano; Cagnina, Leticia Cecilia; Particle Swarm Algorithms to solve engineering problems: a comparison of performance; Hindawi Publishing Corporation; Journal of Engineering; 2013; 2-2013; 1-132314-4912enginfo:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/je/2013/435104/info:eu-repo/semantics/altIdentifier/doi/10.1155/2013/435104info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:39Zoai:ri.conicet.gov.ar:11336/7464instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:39.535CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Particle Swarm Algorithms to solve engineering problems: a comparison of performance |
title |
Particle Swarm Algorithms to solve engineering problems: a comparison of performance |
spellingShingle |
Particle Swarm Algorithms to solve engineering problems: a comparison of performance Tomassetti, Giordano OPTIMIZATION PARTICLE SWARM OPTIMIZATION ENGINEERING PROBLEMS |
title_short |
Particle Swarm Algorithms to solve engineering problems: a comparison of performance |
title_full |
Particle Swarm Algorithms to solve engineering problems: a comparison of performance |
title_fullStr |
Particle Swarm Algorithms to solve engineering problems: a comparison of performance |
title_full_unstemmed |
Particle Swarm Algorithms to solve engineering problems: a comparison of performance |
title_sort |
Particle Swarm Algorithms to solve engineering problems: a comparison of performance |
dc.creator.none.fl_str_mv |
Tomassetti, Giordano Cagnina, Leticia Cecilia |
author |
Tomassetti, Giordano |
author_facet |
Tomassetti, Giordano Cagnina, Leticia Cecilia |
author_role |
author |
author2 |
Cagnina, Leticia Cecilia |
author2_role |
author |
dc.subject.none.fl_str_mv |
OPTIMIZATION PARTICLE SWARM OPTIMIZATION ENGINEERING PROBLEMS |
topic |
OPTIMIZATION PARTICLE SWARM OPTIMIZATION ENGINEERING PROBLEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In many disciplines, the use of evolutionary algorithms to perform optimizations is limited because of the extensive number of objective evaluations required. In fact, in real-world problems, each objective evaluation is frequently obtained by time-expensive numerical calculations. On the other hand, gradient-based algorithms are able to identify optima with a reduced number of objective evaluations, but they have limited exploration capabilities of the search domain and some restrictions when dealing with noncontinuous functions. In this paper, two PSO-based algorithms are compared to evaluate their pros and cons with respect to the effort required to find acceptable solutions. The algorithms implement two different methodologies to solve widely used engineering benchmark problems. Comparison is made both in terms of fixed iterations tests to judge the solution quality reached and fixed threshold to evaluate how quickly each algorithm reaches near-optimal solutions. The results indicate that one PSO algorithm achieves better solutions than the other one in fixed iterations tests, and the latter achieves acceptable results in less-function evaluations with respect to the first PSO in the case of fixed threshold tests. Fil: Tomassetti, Giordano. Centro Ricerche Frascati; Italia Fil: Cagnina, Leticia Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; Argentina |
description |
In many disciplines, the use of evolutionary algorithms to perform optimizations is limited because of the extensive number of objective evaluations required. In fact, in real-world problems, each objective evaluation is frequently obtained by time-expensive numerical calculations. On the other hand, gradient-based algorithms are able to identify optima with a reduced number of objective evaluations, but they have limited exploration capabilities of the search domain and some restrictions when dealing with noncontinuous functions. In this paper, two PSO-based algorithms are compared to evaluate their pros and cons with respect to the effort required to find acceptable solutions. The algorithms implement two different methodologies to solve widely used engineering benchmark problems. Comparison is made both in terms of fixed iterations tests to judge the solution quality reached and fixed threshold to evaluate how quickly each algorithm reaches near-optimal solutions. The results indicate that one PSO algorithm achieves better solutions than the other one in fixed iterations tests, and the latter achieves acceptable results in less-function evaluations with respect to the first PSO in the case of fixed threshold tests. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/7464 Tomassetti, Giordano; Cagnina, Leticia Cecilia; Particle Swarm Algorithms to solve engineering problems: a comparison of performance; Hindawi Publishing Corporation; Journal of Engineering; 2013; 2-2013; 1-13 2314-4912 |
url |
http://hdl.handle.net/11336/7464 |
identifier_str_mv |
Tomassetti, Giordano; Cagnina, Leticia Cecilia; Particle Swarm Algorithms to solve engineering problems: a comparison of performance; Hindawi Publishing Corporation; Journal of Engineering; 2013; 2-2013; 1-13 2314-4912 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/je/2013/435104/ info:eu-repo/semantics/altIdentifier/doi/10.1155/2013/435104 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613746555617280 |
score |
13.070432 |