Evaluación de algoritmos de aprendizaje con datos públicos abiertos de machine learning mediante Orange3

Autores
Martínez, Roxana; Vilaboa, Pablo; Catala, Nelson
Año de publicación
2022
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Existe una tendencia a nivel general por el impulso de la apertura de datos públicos por parte de los gobiernos. Esto conlleva a que no sólo es fun-damental para el crecimiento de los países, sino que, además, incrementa la transparencia gubernamental para con los ciudadanos, y, por otra parte, es una de forma de motivar a la utilización e implementación de la innovación tecno-lógica y a la participación ciudadana. El aporte de este trabajo de investigación conlleva a un relevamiento de los algoritmos de aprendizaje más relevantes en aspectos de aprendizaje supervisado como así también en un estudio general de las herramientas de machine learning más utilizadas en la actualidad. Como si-guiente paso, este trabajo propone un análisis para la evaluación de algoritmos de aprendizaje de datos públicos abiertos, en este caso se toma en cuenta el es-tudio de un dataset público enfocado a enfermedades del corazón a nivel de sa-lud. A través de la herramienta Orange se analizan los distintos algoritmos, y mediante una evaluación de testeo y puntuación (“Test and Score” y “Confu-sion Matrix”) se realiza la clasificación y ranqueo de los resultados arrojados para estos modelos según el criterio de mejor precisión en algoritmo.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Machine learning
Datos públicos abiertos
Aprendizaje supervisado
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/151764

id SEDICI_342888fca63d259aaaa20a7bfb2b1b25
oai_identifier_str oai:sedici.unlp.edu.ar:10915/151764
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Evaluación de algoritmos de aprendizaje con datos públicos abiertos de machine learning mediante Orange3Martínez, RoxanaVilaboa, PabloCatala, NelsonCiencias InformáticasMachine learningDatos públicos abiertosAprendizaje supervisadoExiste una tendencia a nivel general por el impulso de la apertura de datos públicos por parte de los gobiernos. Esto conlleva a que no sólo es fun-damental para el crecimiento de los países, sino que, además, incrementa la transparencia gubernamental para con los ciudadanos, y, por otra parte, es una de forma de motivar a la utilización e implementación de la innovación tecno-lógica y a la participación ciudadana. El aporte de este trabajo de investigación conlleva a un relevamiento de los algoritmos de aprendizaje más relevantes en aspectos de aprendizaje supervisado como así también en un estudio general de las herramientas de machine learning más utilizadas en la actualidad. Como si-guiente paso, este trabajo propone un análisis para la evaluación de algoritmos de aprendizaje de datos públicos abiertos, en este caso se toma en cuenta el es-tudio de un dataset público enfocado a enfermedades del corazón a nivel de sa-lud. A través de la herramienta Orange se analizan los distintos algoritmos, y mediante una evaluación de testeo y puntuación (“Test and Score” y “Confu-sion Matrix”) se realiza la clasificación y ranqueo de los resultados arrojados para estos modelos según el criterio de mejor precisión en algoritmo.Sociedad Argentina de Informática e Investigación Operativa2022-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf58-68http://sedici.unlp.edu.ar/handle/10915/151764spainfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/download/448/380info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:39:07Zoai:sedici.unlp.edu.ar:10915/151764Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:39:07.678SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Evaluación de algoritmos de aprendizaje con datos públicos abiertos de machine learning mediante Orange3
title Evaluación de algoritmos de aprendizaje con datos públicos abiertos de machine learning mediante Orange3
spellingShingle Evaluación de algoritmos de aprendizaje con datos públicos abiertos de machine learning mediante Orange3
Martínez, Roxana
Ciencias Informáticas
Machine learning
Datos públicos abiertos
Aprendizaje supervisado
title_short Evaluación de algoritmos de aprendizaje con datos públicos abiertos de machine learning mediante Orange3
title_full Evaluación de algoritmos de aprendizaje con datos públicos abiertos de machine learning mediante Orange3
title_fullStr Evaluación de algoritmos de aprendizaje con datos públicos abiertos de machine learning mediante Orange3
title_full_unstemmed Evaluación de algoritmos de aprendizaje con datos públicos abiertos de machine learning mediante Orange3
title_sort Evaluación de algoritmos de aprendizaje con datos públicos abiertos de machine learning mediante Orange3
dc.creator.none.fl_str_mv Martínez, Roxana
Vilaboa, Pablo
Catala, Nelson
author Martínez, Roxana
author_facet Martínez, Roxana
Vilaboa, Pablo
Catala, Nelson
author_role author
author2 Vilaboa, Pablo
Catala, Nelson
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Machine learning
Datos públicos abiertos
Aprendizaje supervisado
topic Ciencias Informáticas
Machine learning
Datos públicos abiertos
Aprendizaje supervisado
dc.description.none.fl_txt_mv Existe una tendencia a nivel general por el impulso de la apertura de datos públicos por parte de los gobiernos. Esto conlleva a que no sólo es fun-damental para el crecimiento de los países, sino que, además, incrementa la transparencia gubernamental para con los ciudadanos, y, por otra parte, es una de forma de motivar a la utilización e implementación de la innovación tecno-lógica y a la participación ciudadana. El aporte de este trabajo de investigación conlleva a un relevamiento de los algoritmos de aprendizaje más relevantes en aspectos de aprendizaje supervisado como así también en un estudio general de las herramientas de machine learning más utilizadas en la actualidad. Como si-guiente paso, este trabajo propone un análisis para la evaluación de algoritmos de aprendizaje de datos públicos abiertos, en este caso se toma en cuenta el es-tudio de un dataset público enfocado a enfermedades del corazón a nivel de sa-lud. A través de la herramienta Orange se analizan los distintos algoritmos, y mediante una evaluación de testeo y puntuación (“Test and Score” y “Confu-sion Matrix”) se realiza la clasificación y ranqueo de los resultados arrojados para estos modelos según el criterio de mejor precisión en algoritmo.
Sociedad Argentina de Informática e Investigación Operativa
description Existe una tendencia a nivel general por el impulso de la apertura de datos públicos por parte de los gobiernos. Esto conlleva a que no sólo es fun-damental para el crecimiento de los países, sino que, además, incrementa la transparencia gubernamental para con los ciudadanos, y, por otra parte, es una de forma de motivar a la utilización e implementación de la innovación tecno-lógica y a la participación ciudadana. El aporte de este trabajo de investigación conlleva a un relevamiento de los algoritmos de aprendizaje más relevantes en aspectos de aprendizaje supervisado como así también en un estudio general de las herramientas de machine learning más utilizadas en la actualidad. Como si-guiente paso, este trabajo propone un análisis para la evaluación de algoritmos de aprendizaje de datos públicos abiertos, en este caso se toma en cuenta el es-tudio de un dataset público enfocado a enfermedades del corazón a nivel de sa-lud. A través de la herramienta Orange se analizan los distintos algoritmos, y mediante una evaluación de testeo y puntuación (“Test and Score” y “Confu-sion Matrix”) se realiza la clasificación y ranqueo de los resultados arrojados para estos modelos según el criterio de mejor precisión en algoritmo.
publishDate 2022
dc.date.none.fl_str_mv 2022-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/151764
url http://sedici.unlp.edu.ar/handle/10915/151764
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/download/448/380
info:eu-repo/semantics/altIdentifier/issn/2451-7496
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
58-68
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616265661939712
score 13.070432