Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics

Autores
Olivares, Felipe; Zunino, Luciano José; Soriano, Miguel C.; Pérez, Darío G.
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we introduce a model to describe the decay of the number of unobserved ordinal patterns as a function of the time series length in noisy chaotic dynamics. More precisely, we show that a stretched exponential model fits the decay of the number of unobserved ordinal patterns for both discrete and continuous chaotic systems contaminated with observational noise, independently of the noise level and the sampling time. Numerical simulations, obtained from the logistic map and the x coordinate of the Lorenz system, both operating in a totally chaotic dynamics were used as test beds. In addition, we contrast our results with those obtained from pure stochastic dynamics. The fitting parameters, namely, the stretching exponent and the characteristic decay rate, are used to distinguish whether the dynamical nature of the data sequence is stochastic or chaotic. Finally, the analysis of experimental records associated with the hyperchaotic pulsations of an optoelectronic oscillator allows us to illustrate the applicability of the proposed approach in a practical context.
Facultad de Ingeniería
Centro de Investigaciones Ópticas
Materia
Ingeniería
Física
chaotic dynamics
time series length
unobserved ordinal patterns
noise
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/124294

id SEDICI_30e76fd2351755c36b2eab4dcc5b98d3
oai_identifier_str oai:sedici.unlp.edu.ar:10915/124294
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamicsOlivares, FelipeZunino, Luciano JoséSoriano, Miguel C.Pérez, Darío G.IngenieríaFísicachaotic dynamicstime series lengthunobserved ordinal patternsnoiseIn this paper, we introduce a model to describe the decay of the number of unobserved ordinal patterns as a function of the time series length in noisy chaotic dynamics. More precisely, we show that a stretched exponential model fits the decay of the number of unobserved ordinal patterns for both discrete and continuous chaotic systems contaminated with observational noise, independently of the noise level and the sampling time. Numerical simulations, obtained from the logistic map and the x coordinate of the Lorenz system, both operating in a totally chaotic dynamics were used as test beds. In addition, we contrast our results with those obtained from pure stochastic dynamics. The fitting parameters, namely, the stretching exponent and the characteristic decay rate, are used to distinguish whether the dynamical nature of the data sequence is stochastic or chaotic. Finally, the analysis of experimental records associated with the hyperchaotic pulsations of an optoelectronic oscillator allows us to illustrate the applicability of the proposed approach in a practical context.Facultad de IngenieríaCentro de Investigaciones Ópticas2019-10-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/124294enginfo:eu-repo/semantics/altIdentifier/issn/2470-0045info:eu-repo/semantics/altIdentifier/issn/2470-0053info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.100.042215info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:10:49Zoai:sedici.unlp.edu.ar:10915/124294Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:10:49.398SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
spellingShingle Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
Olivares, Felipe
Ingeniería
Física
chaotic dynamics
time series length
unobserved ordinal patterns
noise
title_short Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title_full Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title_fullStr Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title_full_unstemmed Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title_sort Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
dc.creator.none.fl_str_mv Olivares, Felipe
Zunino, Luciano José
Soriano, Miguel C.
Pérez, Darío G.
author Olivares, Felipe
author_facet Olivares, Felipe
Zunino, Luciano José
Soriano, Miguel C.
Pérez, Darío G.
author_role author
author2 Zunino, Luciano José
Soriano, Miguel C.
Pérez, Darío G.
author2_role author
author
author
dc.subject.none.fl_str_mv Ingeniería
Física
chaotic dynamics
time series length
unobserved ordinal patterns
noise
topic Ingeniería
Física
chaotic dynamics
time series length
unobserved ordinal patterns
noise
dc.description.none.fl_txt_mv In this paper, we introduce a model to describe the decay of the number of unobserved ordinal patterns as a function of the time series length in noisy chaotic dynamics. More precisely, we show that a stretched exponential model fits the decay of the number of unobserved ordinal patterns for both discrete and continuous chaotic systems contaminated with observational noise, independently of the noise level and the sampling time. Numerical simulations, obtained from the logistic map and the x coordinate of the Lorenz system, both operating in a totally chaotic dynamics were used as test beds. In addition, we contrast our results with those obtained from pure stochastic dynamics. The fitting parameters, namely, the stretching exponent and the characteristic decay rate, are used to distinguish whether the dynamical nature of the data sequence is stochastic or chaotic. Finally, the analysis of experimental records associated with the hyperchaotic pulsations of an optoelectronic oscillator allows us to illustrate the applicability of the proposed approach in a practical context.
Facultad de Ingeniería
Centro de Investigaciones Ópticas
description In this paper, we introduce a model to describe the decay of the number of unobserved ordinal patterns as a function of the time series length in noisy chaotic dynamics. More precisely, we show that a stretched exponential model fits the decay of the number of unobserved ordinal patterns for both discrete and continuous chaotic systems contaminated with observational noise, independently of the noise level and the sampling time. Numerical simulations, obtained from the logistic map and the x coordinate of the Lorenz system, both operating in a totally chaotic dynamics were used as test beds. In addition, we contrast our results with those obtained from pure stochastic dynamics. The fitting parameters, namely, the stretching exponent and the characteristic decay rate, are used to distinguish whether the dynamical nature of the data sequence is stochastic or chaotic. Finally, the analysis of experimental records associated with the hyperchaotic pulsations of an optoelectronic oscillator allows us to illustrate the applicability of the proposed approach in a practical context.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-24
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/124294
url http://sedici.unlp.edu.ar/handle/10915/124294
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2470-0045
info:eu-repo/semantics/altIdentifier/issn/2470-0053
info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.100.042215
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783449605603328
score 12.982451