Using missing ordinal patterns to detect nonlinearity in time series data
- Autores
- Kulp, Christopher W.; Zunino, Luciano José; Osborne, Thomas; Zawadzki, Brianna
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The number of missing ordinal patterns (NMP) is the number of ordinal patterns that do not appear in a series after it has been symbolized using the Bandt and Pompe methodology. In this paper, the NMP is demonstrated as a test for nonlinearity using a surrogate framework in order to see if the NMP for a series is statistically different from the NMP of iterative amplitude adjusted Fourier transform (IAAFT) surrogates. It is found that the NMP works well as a test statistic for nonlinearity, even in the cases of very short time series. Both model and experimental time series are used to demonstrate the efficacy of the NMP as a test for nonlinearity.
Fil: Kulp, Christopher W.. Lycoming College; Estados Unidos
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina
Fil: Osborne, Thomas. Lycoming College; Estados Unidos
Fil: Zawadzki, Brianna. Lycoming College; Estados Unidos - Materia
-
Time Series Analysis
Nonlinearity
Missing Ordinal Patterns
Surrogate Method - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/49242
Ver los metadatos del registro completo
id |
CONICETDig_145f8984e53a0cbe394b20b1cecf1563 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/49242 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Using missing ordinal patterns to detect nonlinearity in time series dataKulp, Christopher W.Zunino, Luciano JoséOsborne, ThomasZawadzki, BriannaTime Series AnalysisNonlinearityMissing Ordinal PatternsSurrogate Methodhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The number of missing ordinal patterns (NMP) is the number of ordinal patterns that do not appear in a series after it has been symbolized using the Bandt and Pompe methodology. In this paper, the NMP is demonstrated as a test for nonlinearity using a surrogate framework in order to see if the NMP for a series is statistically different from the NMP of iterative amplitude adjusted Fourier transform (IAAFT) surrogates. It is found that the NMP works well as a test statistic for nonlinearity, even in the cases of very short time series. Both model and experimental time series are used to demonstrate the efficacy of the NMP as a test for nonlinearity.Fil: Kulp, Christopher W.. Lycoming College; Estados UnidosFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; ArgentinaFil: Osborne, Thomas. Lycoming College; Estados UnidosFil: Zawadzki, Brianna. Lycoming College; Estados UnidosAmerican Physical Society2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/49242Kulp, Christopher W.; Zunino, Luciano José; Osborne, Thomas; Zawadzki, Brianna; Using missing ordinal patterns to detect nonlinearity in time series data; American Physical Society; Physical Review E; 96; 2; 8-2017; 1-10; 0222182470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.96.022218info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.022218info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:09:22Zoai:ri.conicet.gov.ar:11336/49242instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:09:22.978CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Using missing ordinal patterns to detect nonlinearity in time series data |
title |
Using missing ordinal patterns to detect nonlinearity in time series data |
spellingShingle |
Using missing ordinal patterns to detect nonlinearity in time series data Kulp, Christopher W. Time Series Analysis Nonlinearity Missing Ordinal Patterns Surrogate Method |
title_short |
Using missing ordinal patterns to detect nonlinearity in time series data |
title_full |
Using missing ordinal patterns to detect nonlinearity in time series data |
title_fullStr |
Using missing ordinal patterns to detect nonlinearity in time series data |
title_full_unstemmed |
Using missing ordinal patterns to detect nonlinearity in time series data |
title_sort |
Using missing ordinal patterns to detect nonlinearity in time series data |
dc.creator.none.fl_str_mv |
Kulp, Christopher W. Zunino, Luciano José Osborne, Thomas Zawadzki, Brianna |
author |
Kulp, Christopher W. |
author_facet |
Kulp, Christopher W. Zunino, Luciano José Osborne, Thomas Zawadzki, Brianna |
author_role |
author |
author2 |
Zunino, Luciano José Osborne, Thomas Zawadzki, Brianna |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Time Series Analysis Nonlinearity Missing Ordinal Patterns Surrogate Method |
topic |
Time Series Analysis Nonlinearity Missing Ordinal Patterns Surrogate Method |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The number of missing ordinal patterns (NMP) is the number of ordinal patterns that do not appear in a series after it has been symbolized using the Bandt and Pompe methodology. In this paper, the NMP is demonstrated as a test for nonlinearity using a surrogate framework in order to see if the NMP for a series is statistically different from the NMP of iterative amplitude adjusted Fourier transform (IAAFT) surrogates. It is found that the NMP works well as a test statistic for nonlinearity, even in the cases of very short time series. Both model and experimental time series are used to demonstrate the efficacy of the NMP as a test for nonlinearity. Fil: Kulp, Christopher W.. Lycoming College; Estados Unidos Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina Fil: Osborne, Thomas. Lycoming College; Estados Unidos Fil: Zawadzki, Brianna. Lycoming College; Estados Unidos |
description |
The number of missing ordinal patterns (NMP) is the number of ordinal patterns that do not appear in a series after it has been symbolized using the Bandt and Pompe methodology. In this paper, the NMP is demonstrated as a test for nonlinearity using a surrogate framework in order to see if the NMP for a series is statistically different from the NMP of iterative amplitude adjusted Fourier transform (IAAFT) surrogates. It is found that the NMP works well as a test statistic for nonlinearity, even in the cases of very short time series. Both model and experimental time series are used to demonstrate the efficacy of the NMP as a test for nonlinearity. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/49242 Kulp, Christopher W.; Zunino, Luciano José; Osborne, Thomas; Zawadzki, Brianna; Using missing ordinal patterns to detect nonlinearity in time series data; American Physical Society; Physical Review E; 96; 2; 8-2017; 1-10; 022218 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/49242 |
identifier_str_mv |
Kulp, Christopher W.; Zunino, Luciano José; Osborne, Thomas; Zawadzki, Brianna; Using missing ordinal patterns to detect nonlinearity in time series data; American Physical Society; Physical Review E; 96; 2; 8-2017; 1-10; 022218 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.96.022218 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.022218 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083241187999744 |
score |
13.22299 |