Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics

Autores
Olivares Zamora, Felipe Esteban; Zunino, Luciano José; Soriano, Miguel C.; Pérez, Darío Gabriel
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we introduce a model to describe the decay of the number of unobserved ordinal patterns as a function of the time series length in noisy chaotic dynamics. More precisely, we show that a stretched exponential model fits the decay of the number of unobserved ordinal patterns for both discrete and continuous chaotic systems contaminated with observational noise, independently of the noise level and the sampling time. Numerical simulations, obtained from the logistic map and the x coordinate of the Lorenz system, both operating in a totally chaotic dynamics were used as test beds. In addition, we contrast our results with those obtained from pure stochastic dynamics. The fitting parameters, namely, the stretching exponent and the characteristic decay rate, are used to distinguish whether the dynamical nature of the data sequence is stochastic or chaotic. Finally, the analysis of experimental records associated with the hyperchaotic pulsations of an optoelectronic oscillator allows us to illustrate the applicability of the proposed approach in a practical context.
Fil: Olivares Zamora, Felipe Esteban. Pontificia Universidad Católica de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Soriano, Miguel C.. Universitat de les Illes Balears; España
Fil: Pérez, Darío Gabriel. Pontificia Universidad Católica de Valparaíso; Chile
Materia
UNOBSERVED ORDINAL PATTERNS
NOISY CHAOTIC DYNAMICS
BANDT AND POMPE SYMBOLIZATION TECHNIQUE
STRETCHED EXPONENTIAL MODEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/122474

id CONICETDig_8752018b8fa7678d42c8e475eb45d71f
oai_identifier_str oai:ri.conicet.gov.ar:11336/122474
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamicsOlivares Zamora, Felipe EstebanZunino, Luciano JoséSoriano, Miguel C.Pérez, Darío GabrielUNOBSERVED ORDINAL PATTERNSNOISY CHAOTIC DYNAMICSBANDT AND POMPE SYMBOLIZATION TECHNIQUESTRETCHED EXPONENTIAL MODELhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this paper, we introduce a model to describe the decay of the number of unobserved ordinal patterns as a function of the time series length in noisy chaotic dynamics. More precisely, we show that a stretched exponential model fits the decay of the number of unobserved ordinal patterns for both discrete and continuous chaotic systems contaminated with observational noise, independently of the noise level and the sampling time. Numerical simulations, obtained from the logistic map and the x coordinate of the Lorenz system, both operating in a totally chaotic dynamics were used as test beds. In addition, we contrast our results with those obtained from pure stochastic dynamics. The fitting parameters, namely, the stretching exponent and the characteristic decay rate, are used to distinguish whether the dynamical nature of the data sequence is stochastic or chaotic. Finally, the analysis of experimental records associated with the hyperchaotic pulsations of an optoelectronic oscillator allows us to illustrate the applicability of the proposed approach in a practical context.Fil: Olivares Zamora, Felipe Esteban. Pontificia Universidad Católica de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Soriano, Miguel C.. Universitat de les Illes Balears; EspañaFil: Pérez, Darío Gabriel. Pontificia Universidad Católica de Valparaíso; ChileAmerican Physical Society2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/122474Olivares Zamora, Felipe Esteban; Zunino, Luciano José; Soriano, Miguel C.; Pérez, Darío Gabriel; Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 100; 042215; 10-2019; 1-82470-00532470-0045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.100.042215info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.042215info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:13Zoai:ri.conicet.gov.ar:11336/122474instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:13.288CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
spellingShingle Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
Olivares Zamora, Felipe Esteban
UNOBSERVED ORDINAL PATTERNS
NOISY CHAOTIC DYNAMICS
BANDT AND POMPE SYMBOLIZATION TECHNIQUE
STRETCHED EXPONENTIAL MODEL
title_short Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title_full Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title_fullStr Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title_full_unstemmed Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title_sort Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
dc.creator.none.fl_str_mv Olivares Zamora, Felipe Esteban
Zunino, Luciano José
Soriano, Miguel C.
Pérez, Darío Gabriel
author Olivares Zamora, Felipe Esteban
author_facet Olivares Zamora, Felipe Esteban
Zunino, Luciano José
Soriano, Miguel C.
Pérez, Darío Gabriel
author_role author
author2 Zunino, Luciano José
Soriano, Miguel C.
Pérez, Darío Gabriel
author2_role author
author
author
dc.subject.none.fl_str_mv UNOBSERVED ORDINAL PATTERNS
NOISY CHAOTIC DYNAMICS
BANDT AND POMPE SYMBOLIZATION TECHNIQUE
STRETCHED EXPONENTIAL MODEL
topic UNOBSERVED ORDINAL PATTERNS
NOISY CHAOTIC DYNAMICS
BANDT AND POMPE SYMBOLIZATION TECHNIQUE
STRETCHED EXPONENTIAL MODEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we introduce a model to describe the decay of the number of unobserved ordinal patterns as a function of the time series length in noisy chaotic dynamics. More precisely, we show that a stretched exponential model fits the decay of the number of unobserved ordinal patterns for both discrete and continuous chaotic systems contaminated with observational noise, independently of the noise level and the sampling time. Numerical simulations, obtained from the logistic map and the x coordinate of the Lorenz system, both operating in a totally chaotic dynamics were used as test beds. In addition, we contrast our results with those obtained from pure stochastic dynamics. The fitting parameters, namely, the stretching exponent and the characteristic decay rate, are used to distinguish whether the dynamical nature of the data sequence is stochastic or chaotic. Finally, the analysis of experimental records associated with the hyperchaotic pulsations of an optoelectronic oscillator allows us to illustrate the applicability of the proposed approach in a practical context.
Fil: Olivares Zamora, Felipe Esteban. Pontificia Universidad Católica de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Soriano, Miguel C.. Universitat de les Illes Balears; España
Fil: Pérez, Darío Gabriel. Pontificia Universidad Católica de Valparaíso; Chile
description In this paper, we introduce a model to describe the decay of the number of unobserved ordinal patterns as a function of the time series length in noisy chaotic dynamics. More precisely, we show that a stretched exponential model fits the decay of the number of unobserved ordinal patterns for both discrete and continuous chaotic systems contaminated with observational noise, independently of the noise level and the sampling time. Numerical simulations, obtained from the logistic map and the x coordinate of the Lorenz system, both operating in a totally chaotic dynamics were used as test beds. In addition, we contrast our results with those obtained from pure stochastic dynamics. The fitting parameters, namely, the stretching exponent and the characteristic decay rate, are used to distinguish whether the dynamical nature of the data sequence is stochastic or chaotic. Finally, the analysis of experimental records associated with the hyperchaotic pulsations of an optoelectronic oscillator allows us to illustrate the applicability of the proposed approach in a practical context.
publishDate 2019
dc.date.none.fl_str_mv 2019-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/122474
Olivares Zamora, Felipe Esteban; Zunino, Luciano José; Soriano, Miguel C.; Pérez, Darío Gabriel; Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 100; 042215; 10-2019; 1-8
2470-0053
2470-0045
CONICET Digital
CONICET
url http://hdl.handle.net/11336/122474
identifier_str_mv Olivares Zamora, Felipe Esteban; Zunino, Luciano José; Soriano, Miguel C.; Pérez, Darío Gabriel; Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 100; 042215; 10-2019; 1-8
2470-0053
2470-0045
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.100.042215
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.042215
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613823636439040
score 13.070432