Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
- Autores
- Olivares Zamora, Felipe Esteban; Zunino, Luciano José; Soriano, Miguel C.; Pérez, Darío Gabriel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we introduce a model to describe the decay of the number of unobserved ordinal patterns as a function of the time series length in noisy chaotic dynamics. More precisely, we show that a stretched exponential model fits the decay of the number of unobserved ordinal patterns for both discrete and continuous chaotic systems contaminated with observational noise, independently of the noise level and the sampling time. Numerical simulations, obtained from the logistic map and the x coordinate of the Lorenz system, both operating in a totally chaotic dynamics were used as test beds. In addition, we contrast our results with those obtained from pure stochastic dynamics. The fitting parameters, namely, the stretching exponent and the characteristic decay rate, are used to distinguish whether the dynamical nature of the data sequence is stochastic or chaotic. Finally, the analysis of experimental records associated with the hyperchaotic pulsations of an optoelectronic oscillator allows us to illustrate the applicability of the proposed approach in a practical context.
Fil: Olivares Zamora, Felipe Esteban. Pontificia Universidad Católica de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Soriano, Miguel C.. Universitat de les Illes Balears; España
Fil: Pérez, Darío Gabriel. Pontificia Universidad Católica de Valparaíso; Chile - Materia
-
UNOBSERVED ORDINAL PATTERNS
NOISY CHAOTIC DYNAMICS
BANDT AND POMPE SYMBOLIZATION TECHNIQUE
STRETCHED EXPONENTIAL MODEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/122474
Ver los metadatos del registro completo
id |
CONICETDig_8752018b8fa7678d42c8e475eb45d71f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/122474 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamicsOlivares Zamora, Felipe EstebanZunino, Luciano JoséSoriano, Miguel C.Pérez, Darío GabrielUNOBSERVED ORDINAL PATTERNSNOISY CHAOTIC DYNAMICSBANDT AND POMPE SYMBOLIZATION TECHNIQUESTRETCHED EXPONENTIAL MODELhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this paper, we introduce a model to describe the decay of the number of unobserved ordinal patterns as a function of the time series length in noisy chaotic dynamics. More precisely, we show that a stretched exponential model fits the decay of the number of unobserved ordinal patterns for both discrete and continuous chaotic systems contaminated with observational noise, independently of the noise level and the sampling time. Numerical simulations, obtained from the logistic map and the x coordinate of the Lorenz system, both operating in a totally chaotic dynamics were used as test beds. In addition, we contrast our results with those obtained from pure stochastic dynamics. The fitting parameters, namely, the stretching exponent and the characteristic decay rate, are used to distinguish whether the dynamical nature of the data sequence is stochastic or chaotic. Finally, the analysis of experimental records associated with the hyperchaotic pulsations of an optoelectronic oscillator allows us to illustrate the applicability of the proposed approach in a practical context.Fil: Olivares Zamora, Felipe Esteban. Pontificia Universidad Católica de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Soriano, Miguel C.. Universitat de les Illes Balears; EspañaFil: Pérez, Darío Gabriel. Pontificia Universidad Católica de Valparaíso; ChileAmerican Physical Society2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/122474Olivares Zamora, Felipe Esteban; Zunino, Luciano José; Soriano, Miguel C.; Pérez, Darío Gabriel; Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 100; 042215; 10-2019; 1-82470-00532470-0045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.100.042215info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.042215info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:13Zoai:ri.conicet.gov.ar:11336/122474instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:13.288CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics |
title |
Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics |
spellingShingle |
Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics Olivares Zamora, Felipe Esteban UNOBSERVED ORDINAL PATTERNS NOISY CHAOTIC DYNAMICS BANDT AND POMPE SYMBOLIZATION TECHNIQUE STRETCHED EXPONENTIAL MODEL |
title_short |
Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics |
title_full |
Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics |
title_fullStr |
Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics |
title_full_unstemmed |
Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics |
title_sort |
Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics |
dc.creator.none.fl_str_mv |
Olivares Zamora, Felipe Esteban Zunino, Luciano José Soriano, Miguel C. Pérez, Darío Gabriel |
author |
Olivares Zamora, Felipe Esteban |
author_facet |
Olivares Zamora, Felipe Esteban Zunino, Luciano José Soriano, Miguel C. Pérez, Darío Gabriel |
author_role |
author |
author2 |
Zunino, Luciano José Soriano, Miguel C. Pérez, Darío Gabriel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
UNOBSERVED ORDINAL PATTERNS NOISY CHAOTIC DYNAMICS BANDT AND POMPE SYMBOLIZATION TECHNIQUE STRETCHED EXPONENTIAL MODEL |
topic |
UNOBSERVED ORDINAL PATTERNS NOISY CHAOTIC DYNAMICS BANDT AND POMPE SYMBOLIZATION TECHNIQUE STRETCHED EXPONENTIAL MODEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we introduce a model to describe the decay of the number of unobserved ordinal patterns as a function of the time series length in noisy chaotic dynamics. More precisely, we show that a stretched exponential model fits the decay of the number of unobserved ordinal patterns for both discrete and continuous chaotic systems contaminated with observational noise, independently of the noise level and the sampling time. Numerical simulations, obtained from the logistic map and the x coordinate of the Lorenz system, both operating in a totally chaotic dynamics were used as test beds. In addition, we contrast our results with those obtained from pure stochastic dynamics. The fitting parameters, namely, the stretching exponent and the characteristic decay rate, are used to distinguish whether the dynamical nature of the data sequence is stochastic or chaotic. Finally, the analysis of experimental records associated with the hyperchaotic pulsations of an optoelectronic oscillator allows us to illustrate the applicability of the proposed approach in a practical context. Fil: Olivares Zamora, Felipe Esteban. Pontificia Universidad Católica de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina Fil: Soriano, Miguel C.. Universitat de les Illes Balears; España Fil: Pérez, Darío Gabriel. Pontificia Universidad Católica de Valparaíso; Chile |
description |
In this paper, we introduce a model to describe the decay of the number of unobserved ordinal patterns as a function of the time series length in noisy chaotic dynamics. More precisely, we show that a stretched exponential model fits the decay of the number of unobserved ordinal patterns for both discrete and continuous chaotic systems contaminated with observational noise, independently of the noise level and the sampling time. Numerical simulations, obtained from the logistic map and the x coordinate of the Lorenz system, both operating in a totally chaotic dynamics were used as test beds. In addition, we contrast our results with those obtained from pure stochastic dynamics. The fitting parameters, namely, the stretching exponent and the characteristic decay rate, are used to distinguish whether the dynamical nature of the data sequence is stochastic or chaotic. Finally, the analysis of experimental records associated with the hyperchaotic pulsations of an optoelectronic oscillator allows us to illustrate the applicability of the proposed approach in a practical context. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/122474 Olivares Zamora, Felipe Esteban; Zunino, Luciano José; Soriano, Miguel C.; Pérez, Darío Gabriel; Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 100; 042215; 10-2019; 1-8 2470-0053 2470-0045 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/122474 |
identifier_str_mv |
Olivares Zamora, Felipe Esteban; Zunino, Luciano José; Soriano, Miguel C.; Pérez, Darío Gabriel; Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 100; 042215; 10-2019; 1-8 2470-0053 2470-0045 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.100.042215 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.042215 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613823636439040 |
score |
13.070432 |