Improving network generalization through selection of examples
- Autores
- Cannas, Sergio A.; Franco, Leonardo
- Año de publicación
- 1998
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this work, we study how the selection of examples affects the learning procedure in a neural network and its relationship with the complexity of the function under study and its architecture. We focus on three different problems: parity, addition of two number and bitshifting implemented on feed-forward Neural Networks. For the parity problem, one of the most used problems for testing learning algorithms, we obtain the result that only the use of the whole set of examples assures global learnings. For the other two functions we show that generalization can be considerably improved with a particular selection of examples instead of a random one.
Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Informática
Neural nets
Network Architecture and Design
neural networks
machine learning
generalization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/24820
Ver los metadatos del registro completo
id |
SEDICI_30779056c0d6cf79e1f276f135029fd3 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/24820 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Improving network generalization through selection of examplesCannas, Sergio A.Franco, LeonardoCiencias InformáticasInformáticaNeural netsNetwork Architecture and Designneural networksmachine learninggeneralizationIn this work, we study how the selection of examples affects the learning procedure in a neural network and its relationship with the complexity of the function under study and its architecture. We focus on three different problems: parity, addition of two number and bitshifting implemented on feed-forward Neural Networks. For the parity problem, one of the most used problems for testing learning algorithms, we obtain the result that only the use of the whole set of examples assures global learnings. For the other two functions we show that generalization can be considerably improved with a particular selection of examples instead of a random one.Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)1998-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24820enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:39:26Zoai:sedici.unlp.edu.ar:10915/24820Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:39:26.8SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Improving network generalization through selection of examples |
title |
Improving network generalization through selection of examples |
spellingShingle |
Improving network generalization through selection of examples Cannas, Sergio A. Ciencias Informáticas Informática Neural nets Network Architecture and Design neural networks machine learning generalization |
title_short |
Improving network generalization through selection of examples |
title_full |
Improving network generalization through selection of examples |
title_fullStr |
Improving network generalization through selection of examples |
title_full_unstemmed |
Improving network generalization through selection of examples |
title_sort |
Improving network generalization through selection of examples |
dc.creator.none.fl_str_mv |
Cannas, Sergio A. Franco, Leonardo |
author |
Cannas, Sergio A. |
author_facet |
Cannas, Sergio A. Franco, Leonardo |
author_role |
author |
author2 |
Franco, Leonardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Informática Neural nets Network Architecture and Design neural networks machine learning generalization |
topic |
Ciencias Informáticas Informática Neural nets Network Architecture and Design neural networks machine learning generalization |
dc.description.none.fl_txt_mv |
In this work, we study how the selection of examples affects the learning procedure in a neural network and its relationship with the complexity of the function under study and its architecture. We focus on three different problems: parity, addition of two number and bitshifting implemented on feed-forward Neural Networks. For the parity problem, one of the most used problems for testing learning algorithms, we obtain the result that only the use of the whole set of examples assures global learnings. For the other two functions we show that generalization can be considerably improved with a particular selection of examples instead of a random one. Sistemas Inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
In this work, we study how the selection of examples affects the learning procedure in a neural network and its relationship with the complexity of the function under study and its architecture. We focus on three different problems: parity, addition of two number and bitshifting implemented on feed-forward Neural Networks. For the parity problem, one of the most used problems for testing learning algorithms, we obtain the result that only the use of the whole set of examples assures global learnings. For the other two functions we show that generalization can be considerably improved with a particular selection of examples instead of a random one. |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/24820 |
url |
http://sedici.unlp.edu.ar/handle/10915/24820 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532067687628800 |
score |
13.001348 |