Boosting classifiers for weed seeds identification
- Autores
- Granitto, Pablo Miguel; Garralda, Pablo A.; Verdes, Pablo Fabián; Ceccatto, Hermenegildo Alejandro
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement and expand a previous study on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we establish statistical bounds and confidence levels on the results reported in our preliminary study. Furthermore, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters. Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that the improvement in classification accuracy after boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color characteristics. However, it might be enough to make the classifier still acceptable in practical applications.
Eje: Visión
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
machine vision
classification
boosting
neural networks
Neural nets - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22998
Ver los metadatos del registro completo
id |
SEDICI_4d54979fafd2d8624ec8e99410ccb391 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22998 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Boosting classifiers for weed seeds identificationGranitto, Pablo MiguelGarralda, Pablo A.Verdes, Pablo FabiánCeccatto, Hermenegildo AlejandroCiencias Informáticasmachine visionclassificationboostingneural networksNeural netsThe identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement and expand a previous study on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we establish statistical bounds and confidence levels on the results reported in our preliminary study. Furthermore, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters. Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that the improvement in classification accuracy after boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color characteristics. However, it might be enough to make the classifier still acceptable in practical applications.Eje: VisiónRed de Universidades con Carreras en Informática (RedUNCI)2002-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf530-541http://sedici.unlp.edu.ar/handle/10915/22998enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:52Zoai:sedici.unlp.edu.ar:10915/22998Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:52.598SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Boosting classifiers for weed seeds identification |
title |
Boosting classifiers for weed seeds identification |
spellingShingle |
Boosting classifiers for weed seeds identification Granitto, Pablo Miguel Ciencias Informáticas machine vision classification boosting neural networks Neural nets |
title_short |
Boosting classifiers for weed seeds identification |
title_full |
Boosting classifiers for weed seeds identification |
title_fullStr |
Boosting classifiers for weed seeds identification |
title_full_unstemmed |
Boosting classifiers for weed seeds identification |
title_sort |
Boosting classifiers for weed seeds identification |
dc.creator.none.fl_str_mv |
Granitto, Pablo Miguel Garralda, Pablo A. Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro |
author |
Granitto, Pablo Miguel |
author_facet |
Granitto, Pablo Miguel Garralda, Pablo A. Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro |
author_role |
author |
author2 |
Garralda, Pablo A. Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas machine vision classification boosting neural networks Neural nets |
topic |
Ciencias Informáticas machine vision classification boosting neural networks Neural nets |
dc.description.none.fl_txt_mv |
The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement and expand a previous study on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we establish statistical bounds and confidence levels on the results reported in our preliminary study. Furthermore, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters. Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that the improvement in classification accuracy after boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color characteristics. However, it might be enough to make the classifier still acceptable in practical applications. Eje: Visión Red de Universidades con Carreras en Informática (RedUNCI) |
description |
The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement and expand a previous study on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we establish statistical bounds and confidence levels on the results reported in our preliminary study. Furthermore, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters. Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that the improvement in classification accuracy after boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color characteristics. However, it might be enough to make the classifier still acceptable in practical applications. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22998 |
url |
http://sedici.unlp.edu.ar/handle/10915/22998 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 530-541 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063905869135872 |
score |
13.22299 |