Reduced form vector directional quantiles

Autores
Montes Rojas, Gabriel Victorio
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we develop a reduced form multivariate quantile model, using a directional quantile framework. The proposed model is the solution to a collection of directional quantile models for a fixed orthonormal basis, in which each component represents a directional quantile that corresponds to a particular endogenous variable. The model thus delivers a map from the space of exogenous variables (or the σ-field generated by the information available at a particular time) and a unit ball whose dimension is given by the number of endogenous variables, to the space of endogenous variables. The main effect of interest is that of exogenous variables on the vector of endogenous variables, which depends on a multivariate quantile index. An estimator is proposed, using quantile regression time series models, and we study its asymptotic properties. The estimator is then applied to study the interdependence among countries in the European sovereign bonds credit default swap market.
Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina. Universitat Autònoma de Barcelona; España. Universidad de San Andrés; Argentina
Materia
Credit Default Swaps
Multivariate Quantiles
Multivariate Time-Series
Vector Autoregression
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/51933

id CONICETDig_96f206bd2f2d53f4c1d7592ac50d98ba
oai_identifier_str oai:ri.conicet.gov.ar:11336/51933
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reduced form vector directional quantilesMontes Rojas, Gabriel VictorioCredit Default SwapsMultivariate QuantilesMultivariate Time-SeriesVector Autoregressionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we develop a reduced form multivariate quantile model, using a directional quantile framework. The proposed model is the solution to a collection of directional quantile models for a fixed orthonormal basis, in which each component represents a directional quantile that corresponds to a particular endogenous variable. The model thus delivers a map from the space of exogenous variables (or the σ-field generated by the information available at a particular time) and a unit ball whose dimension is given by the number of endogenous variables, to the space of endogenous variables. The main effect of interest is that of exogenous variables on the vector of endogenous variables, which depends on a multivariate quantile index. An estimator is proposed, using quantile regression time series models, and we study its asymptotic properties. The estimator is then applied to study the interdependence among countries in the European sovereign bonds credit default swap market.Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina. Universitat Autònoma de Barcelona; España. Universidad de San Andrés; ArgentinaElsevier Inc2017-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51933Montes Rojas, Gabriel Victorio; Reduced form vector directional quantiles; Elsevier Inc; Journal Of Multivariate Analysis; 158; 6-2017; 20-300047-259XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X17301835info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2017.03.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:54Zoai:ri.conicet.gov.ar:11336/51933instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:54.384CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reduced form vector directional quantiles
title Reduced form vector directional quantiles
spellingShingle Reduced form vector directional quantiles
Montes Rojas, Gabriel Victorio
Credit Default Swaps
Multivariate Quantiles
Multivariate Time-Series
Vector Autoregression
title_short Reduced form vector directional quantiles
title_full Reduced form vector directional quantiles
title_fullStr Reduced form vector directional quantiles
title_full_unstemmed Reduced form vector directional quantiles
title_sort Reduced form vector directional quantiles
dc.creator.none.fl_str_mv Montes Rojas, Gabriel Victorio
author Montes Rojas, Gabriel Victorio
author_facet Montes Rojas, Gabriel Victorio
author_role author
dc.subject.none.fl_str_mv Credit Default Swaps
Multivariate Quantiles
Multivariate Time-Series
Vector Autoregression
topic Credit Default Swaps
Multivariate Quantiles
Multivariate Time-Series
Vector Autoregression
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we develop a reduced form multivariate quantile model, using a directional quantile framework. The proposed model is the solution to a collection of directional quantile models for a fixed orthonormal basis, in which each component represents a directional quantile that corresponds to a particular endogenous variable. The model thus delivers a map from the space of exogenous variables (or the σ-field generated by the information available at a particular time) and a unit ball whose dimension is given by the number of endogenous variables, to the space of endogenous variables. The main effect of interest is that of exogenous variables on the vector of endogenous variables, which depends on a multivariate quantile index. An estimator is proposed, using quantile regression time series models, and we study its asymptotic properties. The estimator is then applied to study the interdependence among countries in the European sovereign bonds credit default swap market.
Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina. Universitat Autònoma de Barcelona; España. Universidad de San Andrés; Argentina
description In this paper, we develop a reduced form multivariate quantile model, using a directional quantile framework. The proposed model is the solution to a collection of directional quantile models for a fixed orthonormal basis, in which each component represents a directional quantile that corresponds to a particular endogenous variable. The model thus delivers a map from the space of exogenous variables (or the σ-field generated by the information available at a particular time) and a unit ball whose dimension is given by the number of endogenous variables, to the space of endogenous variables. The main effect of interest is that of exogenous variables on the vector of endogenous variables, which depends on a multivariate quantile index. An estimator is proposed, using quantile regression time series models, and we study its asymptotic properties. The estimator is then applied to study the interdependence among countries in the European sovereign bonds credit default swap market.
publishDate 2017
dc.date.none.fl_str_mv 2017-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/51933
Montes Rojas, Gabriel Victorio; Reduced form vector directional quantiles; Elsevier Inc; Journal Of Multivariate Analysis; 158; 6-2017; 20-30
0047-259X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/51933
identifier_str_mv Montes Rojas, Gabriel Victorio; Reduced form vector directional quantiles; Elsevier Inc; Journal Of Multivariate Analysis; 158; 6-2017; 20-30
0047-259X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X17301835
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2017.03.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc
publisher.none.fl_str_mv Elsevier Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613381706743808
score 13.070432