Learning When to Classify for Early Text Classification

Autores
Loyola, Juan Martín; Errecalde, Marcelo Luis; Escalante, Hugo J.; Montes y Gomez, Manuel
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The problem of classification in supervised learning is a widely studied one. Nonetheless, there are scenarios that received little attention despite its applicability. One of such scenarios is early text classification, where one needs to know the category of a document as soon as possible. The importance of this variant of the classification problem is evident in tasks like sexual predator detection, where one wants to identify an offender as early as possible. This paper presents a framework for early text classification which highlights the two main pieces involved in this problem: classification with partial information and deciding the moment of classification. In this context, a novel approach that learns the second component (when classify) and an adaptation of a temporal measurement for multi-class problems are introduced. Results with a classical text classification corpus in comparison against a model that reads the entire documents confirm the feasibility of our approach.
Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI).
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
tratamiento de textos
Clasificación
supervised learning
partial information
decision of the moment
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/63498

id SEDICI_2e6b9c45ee4e1f3773a9eb78e44f921d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/63498
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Learning When to Classify for Early Text ClassificationLoyola, Juan MartínErrecalde, Marcelo LuisEscalante, Hugo J.Montes y Gomez, ManuelCiencias Informáticastratamiento de textosClasificaciónsupervised learningpartial informationdecision of the momentThe problem of classification in supervised learning is a widely studied one. Nonetheless, there are scenarios that received little attention despite its applicability. One of such scenarios is early text classification, where one needs to know the category of a document as soon as possible. The importance of this variant of the classification problem is evident in tasks like sexual predator detection, where one wants to identify an offender as early as possible. This paper presents a framework for early text classification which highlights the two main pieces involved in this problem: classification with partial information and deciding the moment of classification. In this context, a novel approach that learns the second component (when classify) and an adaptation of a temporal measurement for multi-class problems are introduced. Results with a classical text classification corpus in comparison against a model that reads the entire documents confirm the feasibility of our approach.Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI).Red de Universidades con Carreras en Informática (RedUNCI)2017-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf103-112http://sedici.unlp.edu.ar/handle/10915/63498enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-1539-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:08:25Zoai:sedici.unlp.edu.ar:10915/63498Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:08:25.651SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Learning When to Classify for Early Text Classification
title Learning When to Classify for Early Text Classification
spellingShingle Learning When to Classify for Early Text Classification
Loyola, Juan Martín
Ciencias Informáticas
tratamiento de textos
Clasificación
supervised learning
partial information
decision of the moment
title_short Learning When to Classify for Early Text Classification
title_full Learning When to Classify for Early Text Classification
title_fullStr Learning When to Classify for Early Text Classification
title_full_unstemmed Learning When to Classify for Early Text Classification
title_sort Learning When to Classify for Early Text Classification
dc.creator.none.fl_str_mv Loyola, Juan Martín
Errecalde, Marcelo Luis
Escalante, Hugo J.
Montes y Gomez, Manuel
author Loyola, Juan Martín
author_facet Loyola, Juan Martín
Errecalde, Marcelo Luis
Escalante, Hugo J.
Montes y Gomez, Manuel
author_role author
author2 Errecalde, Marcelo Luis
Escalante, Hugo J.
Montes y Gomez, Manuel
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
tratamiento de textos
Clasificación
supervised learning
partial information
decision of the moment
topic Ciencias Informáticas
tratamiento de textos
Clasificación
supervised learning
partial information
decision of the moment
dc.description.none.fl_txt_mv The problem of classification in supervised learning is a widely studied one. Nonetheless, there are scenarios that received little attention despite its applicability. One of such scenarios is early text classification, where one needs to know the category of a document as soon as possible. The importance of this variant of the classification problem is evident in tasks like sexual predator detection, where one wants to identify an offender as early as possible. This paper presents a framework for early text classification which highlights the two main pieces involved in this problem: classification with partial information and deciding the moment of classification. In this context, a novel approach that learns the second component (when classify) and an adaptation of a temporal measurement for multi-class problems are introduced. Results with a classical text classification corpus in comparison against a model that reads the entire documents confirm the feasibility of our approach.
Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI).
Red de Universidades con Carreras en Informática (RedUNCI)
description The problem of classification in supervised learning is a widely studied one. Nonetheless, there are scenarios that received little attention despite its applicability. One of such scenarios is early text classification, where one needs to know the category of a document as soon as possible. The importance of this variant of the classification problem is evident in tasks like sexual predator detection, where one wants to identify an offender as early as possible. This paper presents a framework for early text classification which highlights the two main pieces involved in this problem: classification with partial information and deciding the moment of classification. In this context, a novel approach that learns the second component (when classify) and an adaptation of a temporal measurement for multi-class problems are introduced. Results with a classical text classification corpus in comparison against a model that reads the entire documents confirm the feasibility of our approach.
publishDate 2017
dc.date.none.fl_str_mv 2017-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/63498
url http://sedici.unlp.edu.ar/handle/10915/63498
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-34-1539-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
103-112
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615956627718144
score 13.069144