Learning When to Classify for Early Text Classification
- Autores
- Loyola, Juan Martín; Errecalde, Marcelo Luis; Escalante, Hugo J.; Montes y Gomez, Manuel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The problem of classification in supervised learning is a widely studied one. Nonetheless, there are scenarios that received little attention despite its applicability. One of such scenarios is early text classification, where one needs to know the category of a document as soon as possible. The importance of this variant of the classification problem is evident in tasks like sexual predator detection, where one wants to identify an offender as early as possible. This paper presents a framework for early text classification which highlights the two main pieces involved in this problem: classification with partial information and deciding the moment of classification. In this context, a novel approach that learns the second component (when classify) and an adaptation of a temporal measurement for multi-class problems are introduced. Results with a classical text classification corpus in comparison against a model that reads the entire documents confirm the feasibility of our approach.
Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI).
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
tratamiento de textos
Clasificación
supervised learning
partial information
decision of the moment - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/63498
Ver los metadatos del registro completo
id |
SEDICI_2e6b9c45ee4e1f3773a9eb78e44f921d |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/63498 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Learning When to Classify for Early Text ClassificationLoyola, Juan MartínErrecalde, Marcelo LuisEscalante, Hugo J.Montes y Gomez, ManuelCiencias Informáticastratamiento de textosClasificaciónsupervised learningpartial informationdecision of the momentThe problem of classification in supervised learning is a widely studied one. Nonetheless, there are scenarios that received little attention despite its applicability. One of such scenarios is early text classification, where one needs to know the category of a document as soon as possible. The importance of this variant of the classification problem is evident in tasks like sexual predator detection, where one wants to identify an offender as early as possible. This paper presents a framework for early text classification which highlights the two main pieces involved in this problem: classification with partial information and deciding the moment of classification. In this context, a novel approach that learns the second component (when classify) and an adaptation of a temporal measurement for multi-class problems are introduced. Results with a classical text classification corpus in comparison against a model that reads the entire documents confirm the feasibility of our approach.Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI).Red de Universidades con Carreras en Informática (RedUNCI)2017-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf103-112http://sedici.unlp.edu.ar/handle/10915/63498enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-1539-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:08:25Zoai:sedici.unlp.edu.ar:10915/63498Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:08:25.651SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Learning When to Classify for Early Text Classification |
title |
Learning When to Classify for Early Text Classification |
spellingShingle |
Learning When to Classify for Early Text Classification Loyola, Juan Martín Ciencias Informáticas tratamiento de textos Clasificación supervised learning partial information decision of the moment |
title_short |
Learning When to Classify for Early Text Classification |
title_full |
Learning When to Classify for Early Text Classification |
title_fullStr |
Learning When to Classify for Early Text Classification |
title_full_unstemmed |
Learning When to Classify for Early Text Classification |
title_sort |
Learning When to Classify for Early Text Classification |
dc.creator.none.fl_str_mv |
Loyola, Juan Martín Errecalde, Marcelo Luis Escalante, Hugo J. Montes y Gomez, Manuel |
author |
Loyola, Juan Martín |
author_facet |
Loyola, Juan Martín Errecalde, Marcelo Luis Escalante, Hugo J. Montes y Gomez, Manuel |
author_role |
author |
author2 |
Errecalde, Marcelo Luis Escalante, Hugo J. Montes y Gomez, Manuel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas tratamiento de textos Clasificación supervised learning partial information decision of the moment |
topic |
Ciencias Informáticas tratamiento de textos Clasificación supervised learning partial information decision of the moment |
dc.description.none.fl_txt_mv |
The problem of classification in supervised learning is a widely studied one. Nonetheless, there are scenarios that received little attention despite its applicability. One of such scenarios is early text classification, where one needs to know the category of a document as soon as possible. The importance of this variant of the classification problem is evident in tasks like sexual predator detection, where one wants to identify an offender as early as possible. This paper presents a framework for early text classification which highlights the two main pieces involved in this problem: classification with partial information and deciding the moment of classification. In this context, a novel approach that learns the second component (when classify) and an adaptation of a temporal measurement for multi-class problems are introduced. Results with a classical text classification corpus in comparison against a model that reads the entire documents confirm the feasibility of our approach. Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI). Red de Universidades con Carreras en Informática (RedUNCI) |
description |
The problem of classification in supervised learning is a widely studied one. Nonetheless, there are scenarios that received little attention despite its applicability. One of such scenarios is early text classification, where one needs to know the category of a document as soon as possible. The importance of this variant of the classification problem is evident in tasks like sexual predator detection, where one wants to identify an offender as early as possible. This paper presents a framework for early text classification which highlights the two main pieces involved in this problem: classification with partial information and deciding the moment of classification. In this context, a novel approach that learns the second component (when classify) and an adaptation of a temporal measurement for multi-class problems are introduced. Results with a classical text classification corpus in comparison against a model that reads the entire documents confirm the feasibility of our approach. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/63498 |
url |
http://sedici.unlp.edu.ar/handle/10915/63498 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-34-1539-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 103-112 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615956627718144 |
score |
13.069144 |