Fuzzy Classification to Classify the Income Category Based On Entropy
- Autores
- Srinivasan, Vaiyapuri; Govind, Rajenderan; Jagannathan, Vandar Kuzhali; Murugesan, Aruna
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The classification problem is one of the main issues in data mining because it aims to extract a classifier which can be used to predict the classes of objects whose class table are unknown. This paper deals with classifying the income database with the entropy based method for analyzing the income is high or low. This method incorporates two mathematical techniques Entropy and Information Gain (IG) with Interactive Dichotomize 3 Algorithm (ID3). Subsets are calculated through Entropy. We fix the threshold point based on the fuzzy approach and the factors are identified using IG. The ID3 algorithm is used to derive a decision tree which classifies the income. This method also helps to extract logical rules that could be used in classifying high or low based on income with various attributed.
Facultad de Informática - Materia
-
Ciencias Informáticas
Clasificación
Entropía
Árboles de Decisión - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9699
Ver los metadatos del registro completo
id |
SEDICI_1b1c3084ffa2038b303eeeaab39e6135 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9699 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Fuzzy Classification to Classify the Income Category Based On EntropySrinivasan, VaiyapuriGovind, RajenderanJagannathan, Vandar KuzhaliMurugesan, ArunaCiencias InformáticasClasificaciónEntropíaÁrboles de DecisiónThe classification problem is one of the main issues in data mining because it aims to extract a classifier which can be used to predict the classes of objects whose class table are unknown. This paper deals with classifying the income database with the entropy based method for analyzing the income is high or low. This method incorporates two mathematical techniques Entropy and Information Gain (IG) with Interactive Dichotomize 3 Algorithm (ID3). Subsets are calculated through Entropy. We fix the threshold point based on the fuzzy approach and the factors are identified using IG. The ID3 algorithm is used to derive a decision tree which classifies the income. This method also helps to extract logical rules that could be used in classifying high or low based on income with various attributed.Facultad de Informática2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf81-85http://sedici.unlp.edu.ar/handle/10915/9699enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct11-5.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:48Zoai:sedici.unlp.edu.ar:10915/9699Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:49.015SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Fuzzy Classification to Classify the Income Category Based On Entropy |
title |
Fuzzy Classification to Classify the Income Category Based On Entropy |
spellingShingle |
Fuzzy Classification to Classify the Income Category Based On Entropy Srinivasan, Vaiyapuri Ciencias Informáticas Clasificación Entropía Árboles de Decisión |
title_short |
Fuzzy Classification to Classify the Income Category Based On Entropy |
title_full |
Fuzzy Classification to Classify the Income Category Based On Entropy |
title_fullStr |
Fuzzy Classification to Classify the Income Category Based On Entropy |
title_full_unstemmed |
Fuzzy Classification to Classify the Income Category Based On Entropy |
title_sort |
Fuzzy Classification to Classify the Income Category Based On Entropy |
dc.creator.none.fl_str_mv |
Srinivasan, Vaiyapuri Govind, Rajenderan Jagannathan, Vandar Kuzhali Murugesan, Aruna |
author |
Srinivasan, Vaiyapuri |
author_facet |
Srinivasan, Vaiyapuri Govind, Rajenderan Jagannathan, Vandar Kuzhali Murugesan, Aruna |
author_role |
author |
author2 |
Govind, Rajenderan Jagannathan, Vandar Kuzhali Murugesan, Aruna |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Clasificación Entropía Árboles de Decisión |
topic |
Ciencias Informáticas Clasificación Entropía Árboles de Decisión |
dc.description.none.fl_txt_mv |
The classification problem is one of the main issues in data mining because it aims to extract a classifier which can be used to predict the classes of objects whose class table are unknown. This paper deals with classifying the income database with the entropy based method for analyzing the income is high or low. This method incorporates two mathematical techniques Entropy and Information Gain (IG) with Interactive Dichotomize 3 Algorithm (ID3). Subsets are calculated through Entropy. We fix the threshold point based on the fuzzy approach and the factors are identified using IG. The ID3 algorithm is used to derive a decision tree which classifies the income. This method also helps to extract logical rules that could be used in classifying high or low based on income with various attributed. Facultad de Informática |
description |
The classification problem is one of the main issues in data mining because it aims to extract a classifier which can be used to predict the classes of objects whose class table are unknown. This paper deals with classifying the income database with the entropy based method for analyzing the income is high or low. This method incorporates two mathematical techniques Entropy and Information Gain (IG) with Interactive Dichotomize 3 Algorithm (ID3). Subsets are calculated through Entropy. We fix the threshold point based on the fuzzy approach and the factors are identified using IG. The ID3 algorithm is used to derive a decision tree which classifies the income. This method also helps to extract logical rules that could be used in classifying high or low based on income with various attributed. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9699 |
url |
http://sedici.unlp.edu.ar/handle/10915/9699 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct11-5.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf 81-85 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615758852653056 |
score |
13.070432 |