An ACO approach for the Parallel Machines Scheduling Problem
- Autores
- Gatica, Claudia R.; Esquivel, Susana Cecilia; Leguizamón, Guillermo
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The parallel machines scheduling problem (Pm) comprises the allocation of jobs on the system’s resources, i.e., a group of machines in parallel. The basic model consists of m identical machines and n jobs. The jobs are assigned according to resource availability following some allocation rule. In this work, we apply the Ant Colony Optimization (ACO) metaheuristic which includes in the construction solution process different specific heuristic to solve Pm for the minimization Maximum Tardiness (Tmax). We also present a comparison of previous results obtained by a simple genetic algorithm (GAs) and an evidence of an improved performance of the ACO metaheuristic on this particular scheduling problem.
Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Parallel
Scheduling
Optimization
Heuristic methods
Ant Colony Optimization (ACO) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21771
Ver los metadatos del registro completo
id |
SEDICI_6a5514aaf3d59553ccafe715bdc3ba22 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21771 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
An ACO approach for the Parallel Machines Scheduling ProblemGatica, Claudia R.Esquivel, Susana CeciliaLeguizamón, GuillermoCiencias InformáticasParallelSchedulingOptimizationHeuristic methodsAnt Colony Optimization (ACO)The parallel machines scheduling problem (Pm) comprises the allocation of jobs on the system’s resources, i.e., a group of machines in parallel. The basic model consists of m identical machines and n jobs. The jobs are assigned according to resource availability following some allocation rule. In this work, we apply the Ant Colony Optimization (ACO) metaheuristic which includes in the construction solution process different specific heuristic to solve P<sub>m</sub> for the minimization Maximum Tardiness (T<sub>max</sub>). We also present a comparison of previous results obtained by a simple genetic algorithm (GAs) and an evidence of an improved performance of the ACO metaheuristic on this particular scheduling problem.Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2008-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21771enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:23Zoai:sedici.unlp.edu.ar:10915/21771Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:24.131SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
An ACO approach for the Parallel Machines Scheduling Problem |
title |
An ACO approach for the Parallel Machines Scheduling Problem |
spellingShingle |
An ACO approach for the Parallel Machines Scheduling Problem Gatica, Claudia R. Ciencias Informáticas Parallel Scheduling Optimization Heuristic methods Ant Colony Optimization (ACO) |
title_short |
An ACO approach for the Parallel Machines Scheduling Problem |
title_full |
An ACO approach for the Parallel Machines Scheduling Problem |
title_fullStr |
An ACO approach for the Parallel Machines Scheduling Problem |
title_full_unstemmed |
An ACO approach for the Parallel Machines Scheduling Problem |
title_sort |
An ACO approach for the Parallel Machines Scheduling Problem |
dc.creator.none.fl_str_mv |
Gatica, Claudia R. Esquivel, Susana Cecilia Leguizamón, Guillermo |
author |
Gatica, Claudia R. |
author_facet |
Gatica, Claudia R. Esquivel, Susana Cecilia Leguizamón, Guillermo |
author_role |
author |
author2 |
Esquivel, Susana Cecilia Leguizamón, Guillermo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Parallel Scheduling Optimization Heuristic methods Ant Colony Optimization (ACO) |
topic |
Ciencias Informáticas Parallel Scheduling Optimization Heuristic methods Ant Colony Optimization (ACO) |
dc.description.none.fl_txt_mv |
The parallel machines scheduling problem (Pm) comprises the allocation of jobs on the system’s resources, i.e., a group of machines in parallel. The basic model consists of m identical machines and n jobs. The jobs are assigned according to resource availability following some allocation rule. In this work, we apply the Ant Colony Optimization (ACO) metaheuristic which includes in the construction solution process different specific heuristic to solve P<sub>m</sub> for the minimization Maximum Tardiness (T<sub>max</sub>). We also present a comparison of previous results obtained by a simple genetic algorithm (GAs) and an evidence of an improved performance of the ACO metaheuristic on this particular scheduling problem. Workshop de Agentes y Sistemas Inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
The parallel machines scheduling problem (Pm) comprises the allocation of jobs on the system’s resources, i.e., a group of machines in parallel. The basic model consists of m identical machines and n jobs. The jobs are assigned according to resource availability following some allocation rule. In this work, we apply the Ant Colony Optimization (ACO) metaheuristic which includes in the construction solution process different specific heuristic to solve P<sub>m</sub> for the minimization Maximum Tardiness (T<sub>max</sub>). We also present a comparison of previous results obtained by a simple genetic algorithm (GAs) and an evidence of an improved performance of the ACO metaheuristic on this particular scheduling problem. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21771 |
url |
http://sedici.unlp.edu.ar/handle/10915/21771 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063899758034944 |
score |
13.22299 |