A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti
- Autores
- Draghi, Walter Omar; Del Papa, María Florencia; Barsch, Aiko; Albicoro, Francisco Javier; Lozano, Mauricio Javier; Pühler, Alfred; Niehaus, Karsten; Lagares, Antonio
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Introduction Sinorhizobium meliloti establishes a symbiosis with Medicago species where the bacterium fixes atmospheric nitrogen for plant nutrition. To achieve a successful symbiosis, however, both partners need to withstand biotic and abiotic stresses within the soil, especially that of excess acid, to which the Medicago-Sinorhizobium symbiotic system is widely recognized as being highly sensitive. Objective To cope with low pH, S. meliloti can undergo an acid-tolerance response (ATR(+)) that not only enables a better survival but also constitutes a more competitive phenotype for Medicago sativa nodulation under acid and neutral conditions. To characterize this phenotype, we employed metabolomics to investigate the biochemical changes operating in ATR(+) cells. Methods A gas chromatography/mass spectrometry approach was used on S. meliloti 2011 cultures showing ATR(+) and ATR(−) phenotypes. After an univariate and multivariate statistical analysis, enzymatic activities and/or reserve carbohydrates characterizing ATR(+) phenotypes were determined. Results Two distinctive populations were clearly defined in cultures grown in acid and neutral pH based on the metabolites present. A shift occurred in the carbon-catabolic pathways, potentially supplying NAD(P)H equivalents for use in other metabolic reactions and/or for maintaining intracellular-pH homeostasis. Furthermore, among the mechanisms related to acid resistance, the ATR(+) phenotype was also characterized by lactate production, envelope modification, and carbon-overflow metabolism. Conclusions Acid-challenged S. meliloti exhibited several changes in different metabolic pathways that, in specific instances, could be identified and related to responses observed in other bacteria under various abiotic stresses. Some of the observed changes included modifications in the pentose-phosphate pathway (PPP), the exopolysaccharide biosynthesis, and in the myo-inositol degradation intermediates. Such modifications are part of a metabolic adaptation in the rhizobia that, as previously reported, is associated to improved phenotypes of acid tolerance and nodulation competitiveness.
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
metabolomics, Sinorhizobium meliloti, acid-tolerance response, acid stress - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/73195
Ver los metadatos del registro completo
| id |
SEDICI_27408040020d8c36efe2c66be84190f0 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/73195 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium melilotiDraghi, Walter OmarDel Papa, María FlorenciaBarsch, AikoAlbicoro, Francisco JavierLozano, Mauricio JavierPühler, AlfredNiehaus, KarstenLagares, AntonioCiencias Exactasmetabolomics, Sinorhizobium meliloti, acid-tolerance response, acid stressIntroduction Sinorhizobium meliloti establishes a symbiosis with Medicago species where the bacterium fixes atmospheric nitrogen for plant nutrition. To achieve a successful symbiosis, however, both partners need to withstand biotic and abiotic stresses within the soil, especially that of excess acid, to which the Medicago-Sinorhizobium symbiotic system is widely recognized as being highly sensitive. Objective To cope with low pH, S. meliloti can undergo an acid-tolerance response (ATR(+)) that not only enables a better survival but also constitutes a more competitive phenotype for Medicago sativa nodulation under acid and neutral conditions. To characterize this phenotype, we employed metabolomics to investigate the biochemical changes operating in ATR(+) cells. Methods A gas chromatography/mass spectrometry approach was used on S. meliloti 2011 cultures showing ATR(+) and ATR(−) phenotypes. After an univariate and multivariate statistical analysis, enzymatic activities and/or reserve carbohydrates characterizing ATR(+) phenotypes were determined. Results Two distinctive populations were clearly defined in cultures grown in acid and neutral pH based on the metabolites present. A shift occurred in the carbon-catabolic pathways, potentially supplying NAD(P)H equivalents for use in other metabolic reactions and/or for maintaining intracellular-pH homeostasis. Furthermore, among the mechanisms related to acid resistance, the ATR(+) phenotype was also characterized by lactate production, envelope modification, and carbon-overflow metabolism. Conclusions Acid-challenged S. meliloti exhibited several changes in different metabolic pathways that, in specific instances, could be identified and related to responses observed in other bacteria under various abiotic stresses. Some of the observed changes included modifications in the pentose-phosphate pathway (PPP), the exopolysaccharide biosynthesis, and in the myo-inositol degradation intermediates. Such modifications are part of a metabolic adaptation in the rhizobia that, as previously reported, is associated to improved phenotypes of acid tolerance and nodulation competitiveness.Facultad de Ciencias Exactas2017-04-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/73195enginfo:eu-repo/semantics/altIdentifier/issn/1573-3890info:eu-repo/semantics/altIdentifier/doi/10.1007/s11306-017-1210-2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:53:14Zoai:sedici.unlp.edu.ar:10915/73195Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:53:14.377SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti |
| title |
A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti |
| spellingShingle |
A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti Draghi, Walter Omar Ciencias Exactas metabolomics, Sinorhizobium meliloti, acid-tolerance response, acid stress |
| title_short |
A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti |
| title_full |
A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti |
| title_fullStr |
A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti |
| title_full_unstemmed |
A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti |
| title_sort |
A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti |
| dc.creator.none.fl_str_mv |
Draghi, Walter Omar Del Papa, María Florencia Barsch, Aiko Albicoro, Francisco Javier Lozano, Mauricio Javier Pühler, Alfred Niehaus, Karsten Lagares, Antonio |
| author |
Draghi, Walter Omar |
| author_facet |
Draghi, Walter Omar Del Papa, María Florencia Barsch, Aiko Albicoro, Francisco Javier Lozano, Mauricio Javier Pühler, Alfred Niehaus, Karsten Lagares, Antonio |
| author_role |
author |
| author2 |
Del Papa, María Florencia Barsch, Aiko Albicoro, Francisco Javier Lozano, Mauricio Javier Pühler, Alfred Niehaus, Karsten Lagares, Antonio |
| author2_role |
author author author author author author author |
| dc.subject.none.fl_str_mv |
Ciencias Exactas metabolomics, Sinorhizobium meliloti, acid-tolerance response, acid stress |
| topic |
Ciencias Exactas metabolomics, Sinorhizobium meliloti, acid-tolerance response, acid stress |
| dc.description.none.fl_txt_mv |
Introduction Sinorhizobium meliloti establishes a symbiosis with Medicago species where the bacterium fixes atmospheric nitrogen for plant nutrition. To achieve a successful symbiosis, however, both partners need to withstand biotic and abiotic stresses within the soil, especially that of excess acid, to which the Medicago-Sinorhizobium symbiotic system is widely recognized as being highly sensitive. Objective To cope with low pH, S. meliloti can undergo an acid-tolerance response (ATR(+)) that not only enables a better survival but also constitutes a more competitive phenotype for Medicago sativa nodulation under acid and neutral conditions. To characterize this phenotype, we employed metabolomics to investigate the biochemical changes operating in ATR(+) cells. Methods A gas chromatography/mass spectrometry approach was used on S. meliloti 2011 cultures showing ATR(+) and ATR(−) phenotypes. After an univariate and multivariate statistical analysis, enzymatic activities and/or reserve carbohydrates characterizing ATR(+) phenotypes were determined. Results Two distinctive populations were clearly defined in cultures grown in acid and neutral pH based on the metabolites present. A shift occurred in the carbon-catabolic pathways, potentially supplying NAD(P)H equivalents for use in other metabolic reactions and/or for maintaining intracellular-pH homeostasis. Furthermore, among the mechanisms related to acid resistance, the ATR(+) phenotype was also characterized by lactate production, envelope modification, and carbon-overflow metabolism. Conclusions Acid-challenged S. meliloti exhibited several changes in different metabolic pathways that, in specific instances, could be identified and related to responses observed in other bacteria under various abiotic stresses. Some of the observed changes included modifications in the pentose-phosphate pathway (PPP), the exopolysaccharide biosynthesis, and in the myo-inositol degradation intermediates. Such modifications are part of a metabolic adaptation in the rhizobia that, as previously reported, is associated to improved phenotypes of acid tolerance and nodulation competitiveness. Facultad de Ciencias Exactas |
| description |
Introduction Sinorhizobium meliloti establishes a symbiosis with Medicago species where the bacterium fixes atmospheric nitrogen for plant nutrition. To achieve a successful symbiosis, however, both partners need to withstand biotic and abiotic stresses within the soil, especially that of excess acid, to which the Medicago-Sinorhizobium symbiotic system is widely recognized as being highly sensitive. Objective To cope with low pH, S. meliloti can undergo an acid-tolerance response (ATR(+)) that not only enables a better survival but also constitutes a more competitive phenotype for Medicago sativa nodulation under acid and neutral conditions. To characterize this phenotype, we employed metabolomics to investigate the biochemical changes operating in ATR(+) cells. Methods A gas chromatography/mass spectrometry approach was used on S. meliloti 2011 cultures showing ATR(+) and ATR(−) phenotypes. After an univariate and multivariate statistical analysis, enzymatic activities and/or reserve carbohydrates characterizing ATR(+) phenotypes were determined. Results Two distinctive populations were clearly defined in cultures grown in acid and neutral pH based on the metabolites present. A shift occurred in the carbon-catabolic pathways, potentially supplying NAD(P)H equivalents for use in other metabolic reactions and/or for maintaining intracellular-pH homeostasis. Furthermore, among the mechanisms related to acid resistance, the ATR(+) phenotype was also characterized by lactate production, envelope modification, and carbon-overflow metabolism. Conclusions Acid-challenged S. meliloti exhibited several changes in different metabolic pathways that, in specific instances, could be identified and related to responses observed in other bacteria under various abiotic stresses. Some of the observed changes included modifications in the pentose-phosphate pathway (PPP), the exopolysaccharide biosynthesis, and in the myo-inositol degradation intermediates. Such modifications are part of a metabolic adaptation in the rhizobia that, as previously reported, is associated to improved phenotypes of acid tolerance and nodulation competitiveness. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-04-20 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/73195 |
| url |
http://sedici.unlp.edu.ar/handle/10915/73195 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1573-3890 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11306-017-1210-2 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783108893900800 |
| score |
12.982451 |