Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis
- Autores
- Lagares, Antonio; Hozbor, Daniela Flavia; Niehaus, Karsten; Pich Otero, Augusto J. L.; Lorenzen, Jens; Arnold, Walter; Pühler, Alfred
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The genetic characterization of a 5.5-kb chromosomal region of Sinorhizobium meliloti 2011 that contains lpsB, a gene required for the normal development of symbiosis with Medicago spp., is presented. The nucleotide sequence of this DNA fragment revealed the presence of six genes: greA and lpsB, transcribed in the forward direction; and lpsE, lpsD, lpsC, and lrp, transcribed in the reverse direction. Except for lpsB, none of the lps genes were relevant for nodulation and nitrogen fixation. Analysis of the transcriptional organization of lpsB showed that greA and lpsB are part of separate transcriptional units, which is in agreement with the finding of a DNA stretch homologous to a "nonnitrogen" promoter consensus sequence between greA and lpsB. The opposite orientation of lpsB with respect to its first downstream coding sequence, lpsE, indicated that the altered LPS and the defective symbiosis of lpsB mutants are both consequences of a primary nonpolar defect in a single gene. Global sequence comparisons revealed that the greA-lpsB and lrp genes of S. meliloti have a genetic organization similar to that of their homologous loci in R. leguminosarum bv. viciae. In particular, high sequence similarity was found between the translation product of lpsB and a core-related biosynthetic mannosyltransferase of R. leguminosarum bv. viciae encoded by the lpcC gene. The functional relationship between these two genes was demonstrated in genetic complementation experiments in which the S. meliloti lpsB gene restored the wild-type LPS phenotype when introduced into lpcC mutants of R. leguminosarum. These results support the view that S. meliloti lpsB also encodes a mannosyltransferase that participates in the biosynthesis of the LPS core. Evidence is provided for the presence of other lpsB-homologous sequences in several members of the family Rhizobiaceae.
Facultad de Ciencias Exactas
Instituto de Biotecnologia y Biologia Molecular - Materia
-
Ciencias Exactas
Sinorhizobium meliloti - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/83363
Ver los metadatos del registro completo
id |
SEDICI_75907662a7a83ffe41579e5543deae55 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/83363 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesisLagares, AntonioHozbor, Daniela FlaviaNiehaus, KarstenPich Otero, Augusto J. L.Lorenzen, JensArnold, WalterPühler, AlfredCiencias ExactasSinorhizobium melilotiThe genetic characterization of a 5.5-kb chromosomal region of Sinorhizobium meliloti 2011 that contains lpsB, a gene required for the normal development of symbiosis with Medicago spp., is presented. The nucleotide sequence of this DNA fragment revealed the presence of six genes: greA and lpsB, transcribed in the forward direction; and lpsE, lpsD, lpsC, and lrp, transcribed in the reverse direction. Except for lpsB, none of the lps genes were relevant for nodulation and nitrogen fixation. Analysis of the transcriptional organization of lpsB showed that greA and lpsB are part of separate transcriptional units, which is in agreement with the finding of a DNA stretch homologous to a "nonnitrogen" promoter consensus sequence between greA and lpsB. The opposite orientation of lpsB with respect to its first downstream coding sequence, lpsE, indicated that the altered LPS and the defective symbiosis of lpsB mutants are both consequences of a primary nonpolar defect in a single gene. Global sequence comparisons revealed that the greA-lpsB and lrp genes of S. meliloti have a genetic organization similar to that of their homologous loci in R. leguminosarum bv. viciae. In particular, high sequence similarity was found between the translation product of lpsB and a core-related biosynthetic mannosyltransferase of R. leguminosarum bv. viciae encoded by the lpcC gene. The functional relationship between these two genes was demonstrated in genetic complementation experiments in which the S. meliloti lpsB gene restored the wild-type LPS phenotype when introduced into lpcC mutants of R. leguminosarum. These results support the view that S. meliloti lpsB also encodes a mannosyltransferase that participates in the biosynthesis of the LPS core. Evidence is provided for the presence of other lpsB-homologous sequences in several members of the family Rhizobiaceae.Facultad de Ciencias ExactasInstituto de Biotecnologia y Biologia Molecular2001info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1248-1258http://sedici.unlp.edu.ar/handle/10915/83363enginfo:eu-repo/semantics/altIdentifier/issn/0021-9193info:eu-repo/semantics/altIdentifier/doi/10.1128/JB.183.4.1248-1258.2001info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:09Zoai:sedici.unlp.edu.ar:10915/83363Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:09.786SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis |
title |
Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis |
spellingShingle |
Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis Lagares, Antonio Ciencias Exactas Sinorhizobium meliloti |
title_short |
Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis |
title_full |
Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis |
title_fullStr |
Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis |
title_full_unstemmed |
Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis |
title_sort |
Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis |
dc.creator.none.fl_str_mv |
Lagares, Antonio Hozbor, Daniela Flavia Niehaus, Karsten Pich Otero, Augusto J. L. Lorenzen, Jens Arnold, Walter Pühler, Alfred |
author |
Lagares, Antonio |
author_facet |
Lagares, Antonio Hozbor, Daniela Flavia Niehaus, Karsten Pich Otero, Augusto J. L. Lorenzen, Jens Arnold, Walter Pühler, Alfred |
author_role |
author |
author2 |
Hozbor, Daniela Flavia Niehaus, Karsten Pich Otero, Augusto J. L. Lorenzen, Jens Arnold, Walter Pühler, Alfred |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Sinorhizobium meliloti |
topic |
Ciencias Exactas Sinorhizobium meliloti |
dc.description.none.fl_txt_mv |
The genetic characterization of a 5.5-kb chromosomal region of Sinorhizobium meliloti 2011 that contains lpsB, a gene required for the normal development of symbiosis with Medicago spp., is presented. The nucleotide sequence of this DNA fragment revealed the presence of six genes: greA and lpsB, transcribed in the forward direction; and lpsE, lpsD, lpsC, and lrp, transcribed in the reverse direction. Except for lpsB, none of the lps genes were relevant for nodulation and nitrogen fixation. Analysis of the transcriptional organization of lpsB showed that greA and lpsB are part of separate transcriptional units, which is in agreement with the finding of a DNA stretch homologous to a "nonnitrogen" promoter consensus sequence between greA and lpsB. The opposite orientation of lpsB with respect to its first downstream coding sequence, lpsE, indicated that the altered LPS and the defective symbiosis of lpsB mutants are both consequences of a primary nonpolar defect in a single gene. Global sequence comparisons revealed that the greA-lpsB and lrp genes of S. meliloti have a genetic organization similar to that of their homologous loci in R. leguminosarum bv. viciae. In particular, high sequence similarity was found between the translation product of lpsB and a core-related biosynthetic mannosyltransferase of R. leguminosarum bv. viciae encoded by the lpcC gene. The functional relationship between these two genes was demonstrated in genetic complementation experiments in which the S. meliloti lpsB gene restored the wild-type LPS phenotype when introduced into lpcC mutants of R. leguminosarum. These results support the view that S. meliloti lpsB also encodes a mannosyltransferase that participates in the biosynthesis of the LPS core. Evidence is provided for the presence of other lpsB-homologous sequences in several members of the family Rhizobiaceae. Facultad de Ciencias Exactas Instituto de Biotecnologia y Biologia Molecular |
description |
The genetic characterization of a 5.5-kb chromosomal region of Sinorhizobium meliloti 2011 that contains lpsB, a gene required for the normal development of symbiosis with Medicago spp., is presented. The nucleotide sequence of this DNA fragment revealed the presence of six genes: greA and lpsB, transcribed in the forward direction; and lpsE, lpsD, lpsC, and lrp, transcribed in the reverse direction. Except for lpsB, none of the lps genes were relevant for nodulation and nitrogen fixation. Analysis of the transcriptional organization of lpsB showed that greA and lpsB are part of separate transcriptional units, which is in agreement with the finding of a DNA stretch homologous to a "nonnitrogen" promoter consensus sequence between greA and lpsB. The opposite orientation of lpsB with respect to its first downstream coding sequence, lpsE, indicated that the altered LPS and the defective symbiosis of lpsB mutants are both consequences of a primary nonpolar defect in a single gene. Global sequence comparisons revealed that the greA-lpsB and lrp genes of S. meliloti have a genetic organization similar to that of their homologous loci in R. leguminosarum bv. viciae. In particular, high sequence similarity was found between the translation product of lpsB and a core-related biosynthetic mannosyltransferase of R. leguminosarum bv. viciae encoded by the lpcC gene. The functional relationship between these two genes was demonstrated in genetic complementation experiments in which the S. meliloti lpsB gene restored the wild-type LPS phenotype when introduced into lpcC mutants of R. leguminosarum. These results support the view that S. meliloti lpsB also encodes a mannosyltransferase that participates in the biosynthesis of the LPS core. Evidence is provided for the presence of other lpsB-homologous sequences in several members of the family Rhizobiaceae. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/83363 |
url |
http://sedici.unlp.edu.ar/handle/10915/83363 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0021-9193 info:eu-repo/semantics/altIdentifier/doi/10.1128/JB.183.4.1248-1258.2001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1248-1258 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260355756064768 |
score |
13.13397 |