An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids

Autores
Alonso, Ana Esther; Dello Russo, Anahí; Otero Souto, César; Padra, Claudio; Rodríguez, Rodolfo
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper deals with the computation of the vibration modes of a system consisting of a linear elastic solid interacting with an acoustic fluid. A finite element method based on meshes for each medium not matching on the fluid-solid interface is analyzed. Optimal order of convergence is proved for the approximation of the eigenfunctions, as well as a double order for the eigenvalues. Numerical tests confirming the theoretical results and showing the advantage of using non-matching grids are reported. Finally, an a posteriori error estimator for this method is introduced and combined with a mesh refinement strategy. The efficiency of this adaptive technique is tested with further numerical experiments.
Facultad de Ciencias Exactas
Materia
Matemática
Finite Element Method
Vibration Mode
Numerical Test
Error Estimator
Posteriori Error
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/133108

id SEDICI_1f3015d8fda6f03cd31131afd3e24ae2
oai_identifier_str oai:sedici.unlp.edu.ar:10915/133108
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching gridsAlonso, Ana EstherDello Russo, AnahíOtero Souto, CésarPadra, ClaudioRodríguez, RodolfoMatemáticaFinite Element MethodVibration ModeNumerical TestError EstimatorPosteriori ErrorThis paper deals with the computation of the vibration modes of a system consisting of a linear elastic solid interacting with an acoustic fluid. A finite element method based on meshes for each medium not matching on the fluid-solid interface is analyzed. Optimal order of convergence is proved for the approximation of the eigenfunctions, as well as a double order for the eigenvalues. Numerical tests confirming the theoretical results and showing the advantage of using non-matching grids are reported. Finally, an a posteriori error estimator for this method is introduced and combined with a mesh refinement strategy. The efficiency of this adaptive technique is tested with further numerical experiments.Facultad de Ciencias Exactas2001-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf67-78http://sedici.unlp.edu.ar/handle/10915/133108enginfo:eu-repo/semantics/altIdentifier/issn/1432-9360info:eu-repo/semantics/altIdentifier/issn/1433-0369info:eu-repo/semantics/altIdentifier/doi/10.1007/s007910100057info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:24:19Zoai:sedici.unlp.edu.ar:10915/133108Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:24:20.062SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids
title An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids
spellingShingle An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids
Alonso, Ana Esther
Matemática
Finite Element Method
Vibration Mode
Numerical Test
Error Estimator
Posteriori Error
title_short An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids
title_full An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids
title_fullStr An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids
title_full_unstemmed An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids
title_sort An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids
dc.creator.none.fl_str_mv Alonso, Ana Esther
Dello Russo, Anahí
Otero Souto, César
Padra, Claudio
Rodríguez, Rodolfo
author Alonso, Ana Esther
author_facet Alonso, Ana Esther
Dello Russo, Anahí
Otero Souto, César
Padra, Claudio
Rodríguez, Rodolfo
author_role author
author2 Dello Russo, Anahí
Otero Souto, César
Padra, Claudio
Rodríguez, Rodolfo
author2_role author
author
author
author
dc.subject.none.fl_str_mv Matemática
Finite Element Method
Vibration Mode
Numerical Test
Error Estimator
Posteriori Error
topic Matemática
Finite Element Method
Vibration Mode
Numerical Test
Error Estimator
Posteriori Error
dc.description.none.fl_txt_mv This paper deals with the computation of the vibration modes of a system consisting of a linear elastic solid interacting with an acoustic fluid. A finite element method based on meshes for each medium not matching on the fluid-solid interface is analyzed. Optimal order of convergence is proved for the approximation of the eigenfunctions, as well as a double order for the eigenvalues. Numerical tests confirming the theoretical results and showing the advantage of using non-matching grids are reported. Finally, an a posteriori error estimator for this method is introduced and combined with a mesh refinement strategy. The efficiency of this adaptive technique is tested with further numerical experiments.
Facultad de Ciencias Exactas
description This paper deals with the computation of the vibration modes of a system consisting of a linear elastic solid interacting with an acoustic fluid. A finite element method based on meshes for each medium not matching on the fluid-solid interface is analyzed. Optimal order of convergence is proved for the approximation of the eigenfunctions, as well as a double order for the eigenvalues. Numerical tests confirming the theoretical results and showing the advantage of using non-matching grids are reported. Finally, an a posteriori error estimator for this method is introduced and combined with a mesh refinement strategy. The efficiency of this adaptive technique is tested with further numerical experiments.
publishDate 2001
dc.date.none.fl_str_mv 2001-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/133108
url http://sedici.unlp.edu.ar/handle/10915/133108
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1432-9360
info:eu-repo/semantics/altIdentifier/issn/1433-0369
info:eu-repo/semantics/altIdentifier/doi/10.1007/s007910100057
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
67-78
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064297253273600
score 13.22299