Detección de patrones de comportamiento en la red a través del análisis de secuencias
- Autores
- Catania, Jorge; Guerra, Jorge; Romero, Juan Manuel; Palau, Franco; Caffaratti, Gabriel; Marchetta, Martín G.
- Año de publicación
- 2021
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Los enfoques de detección por comportamiento en el tráfico de red se basan en encontrar patrones comunes que sigue un ataque a lo largo de su ciclo de vida, tratando de generalizarlos para poder detectar una traza de ataque no vista con anterioridad. Un enfoque común consiste en la generación de secuencias basadas en caracteres para representar comportamientos maliciosos, y luego aplicar modelos como Cadenas de Markov para generalizar a otros comportamientos similares. Sin embargo, estos últimos presentan limitaciones para explorar más allá del estado anterior. En el presente trabajo se analizan las ventajas y limitaciones de tres arquitecturas de redes neuronales para detectar comportamientos maliciosos capaces de recordar patrones vistos mucho tiempo atrás. Para esto se realizó una evaluación sobre un conjunto de datos específicamente diseñado que incluye comportamientos maliciosos y normales de diversas fuentes. Los resultados preliminares indican que, a pesar de su simplicidad, la aplicación de cualquiera de las arquitecturas de red es un enfoque válido para detectar comportamientos de red maliciosos, lo cual es prometedor para su aplicación a problemas de etiquetado de tráfico de red en el contexto de un flujo de trabajo con interacción humana.
Workshop: WSI - Seguridad Informática
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Botnet
Redes neuronales
Seguridad informática - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/130534
Ver los metadatos del registro completo
| id |
SEDICI_1e0c1f9a718738c1b4bdf7aaecdf472d |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/130534 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Detección de patrones de comportamiento en la red a través del análisis de secuenciasCatania, JorgeGuerra, JorgeRomero, Juan ManuelPalau, FrancoCaffaratti, GabrielMarchetta, Martín G.Ciencias InformáticasBotnetRedes neuronalesSeguridad informáticaLos enfoques de detección por comportamiento en el tráfico de red se basan en encontrar patrones comunes que sigue un ataque a lo largo de su ciclo de vida, tratando de generalizarlos para poder detectar una traza de ataque no vista con anterioridad. Un enfoque común consiste en la generación de secuencias basadas en caracteres para representar comportamientos maliciosos, y luego aplicar modelos como Cadenas de Markov para generalizar a otros comportamientos similares. Sin embargo, estos últimos presentan limitaciones para explorar más allá del estado anterior. En el presente trabajo se analizan las ventajas y limitaciones de tres arquitecturas de redes neuronales para detectar comportamientos maliciosos capaces de recordar patrones vistos mucho tiempo atrás. Para esto se realizó una evaluación sobre un conjunto de datos específicamente diseñado que incluye comportamientos maliciosos y normales de diversas fuentes. Los resultados preliminares indican que, a pesar de su simplicidad, la aplicación de cualquiera de las arquitecturas de red es un enfoque válido para detectar comportamientos de red maliciosos, lo cual es prometedor para su aplicación a problemas de etiquetado de tráfico de red en el contexto de un flujo de trabajo con interacción humana.Workshop: WSI - Seguridad InformáticaRed de Universidades con Carreras en Informática2021-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf695-704http://sedici.unlp.edu.ar/handle/10915/130534spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-633-574-4info:eu-repo/semantics/reference/hdl/10915/129809info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:24:40Zoai:sedici.unlp.edu.ar:10915/130534Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:24:41.136SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Detección de patrones de comportamiento en la red a través del análisis de secuencias |
| title |
Detección de patrones de comportamiento en la red a través del análisis de secuencias |
| spellingShingle |
Detección de patrones de comportamiento en la red a través del análisis de secuencias Catania, Jorge Ciencias Informáticas Botnet Redes neuronales Seguridad informática |
| title_short |
Detección de patrones de comportamiento en la red a través del análisis de secuencias |
| title_full |
Detección de patrones de comportamiento en la red a través del análisis de secuencias |
| title_fullStr |
Detección de patrones de comportamiento en la red a través del análisis de secuencias |
| title_full_unstemmed |
Detección de patrones de comportamiento en la red a través del análisis de secuencias |
| title_sort |
Detección de patrones de comportamiento en la red a través del análisis de secuencias |
| dc.creator.none.fl_str_mv |
Catania, Jorge Guerra, Jorge Romero, Juan Manuel Palau, Franco Caffaratti, Gabriel Marchetta, Martín G. |
| author |
Catania, Jorge |
| author_facet |
Catania, Jorge Guerra, Jorge Romero, Juan Manuel Palau, Franco Caffaratti, Gabriel Marchetta, Martín G. |
| author_role |
author |
| author2 |
Guerra, Jorge Romero, Juan Manuel Palau, Franco Caffaratti, Gabriel Marchetta, Martín G. |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Botnet Redes neuronales Seguridad informática |
| topic |
Ciencias Informáticas Botnet Redes neuronales Seguridad informática |
| dc.description.none.fl_txt_mv |
Los enfoques de detección por comportamiento en el tráfico de red se basan en encontrar patrones comunes que sigue un ataque a lo largo de su ciclo de vida, tratando de generalizarlos para poder detectar una traza de ataque no vista con anterioridad. Un enfoque común consiste en la generación de secuencias basadas en caracteres para representar comportamientos maliciosos, y luego aplicar modelos como Cadenas de Markov para generalizar a otros comportamientos similares. Sin embargo, estos últimos presentan limitaciones para explorar más allá del estado anterior. En el presente trabajo se analizan las ventajas y limitaciones de tres arquitecturas de redes neuronales para detectar comportamientos maliciosos capaces de recordar patrones vistos mucho tiempo atrás. Para esto se realizó una evaluación sobre un conjunto de datos específicamente diseñado que incluye comportamientos maliciosos y normales de diversas fuentes. Los resultados preliminares indican que, a pesar de su simplicidad, la aplicación de cualquiera de las arquitecturas de red es un enfoque válido para detectar comportamientos de red maliciosos, lo cual es prometedor para su aplicación a problemas de etiquetado de tráfico de red en el contexto de un flujo de trabajo con interacción humana. Workshop: WSI - Seguridad Informática Red de Universidades con Carreras en Informática |
| description |
Los enfoques de detección por comportamiento en el tráfico de red se basan en encontrar patrones comunes que sigue un ataque a lo largo de su ciclo de vida, tratando de generalizarlos para poder detectar una traza de ataque no vista con anterioridad. Un enfoque común consiste en la generación de secuencias basadas en caracteres para representar comportamientos maliciosos, y luego aplicar modelos como Cadenas de Markov para generalizar a otros comportamientos similares. Sin embargo, estos últimos presentan limitaciones para explorar más allá del estado anterior. En el presente trabajo se analizan las ventajas y limitaciones de tres arquitecturas de redes neuronales para detectar comportamientos maliciosos capaces de recordar patrones vistos mucho tiempo atrás. Para esto se realizó una evaluación sobre un conjunto de datos específicamente diseñado que incluye comportamientos maliciosos y normales de diversas fuentes. Los resultados preliminares indican que, a pesar de su simplicidad, la aplicación de cualquiera de las arquitecturas de red es un enfoque válido para detectar comportamientos de red maliciosos, lo cual es prometedor para su aplicación a problemas de etiquetado de tráfico de red en el contexto de un flujo de trabajo con interacción humana. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/130534 |
| url |
http://sedici.unlp.edu.ar/handle/10915/130534 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-633-574-4 info:eu-repo/semantics/reference/hdl/10915/129809 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 695-704 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846064300230180864 |
| score |
12.8982525 |