Botnet Behavior Detection using Network Synchronism
- Autores
- García, Sebastián; Zunino, Alejandro; Campo, Marcelo
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Botnets diversity and dynamism challenge detection and classification algorithms, which depend heavily on botnets protocol and can quickly become avoidable. A more general detection method, then, was needed. We propose an analysis of their most inherent characteristics, like synchronism and network load combined with a detailed analysis of error rates. Not relying in any specific botnet technology or protocol, our classification approach sought to detect synchronic behavioral patterns in network traffic flows and clustered them based on botnets characteristics. Different botnet and normal captures were taken and a time slice approach was used to successfully separate them. Results show that botnets and normal computers traffic can be accurately detected by our approach and thus enhance detection effectiveness.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Botnet
detection
clustering
EM algorithm
security - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/152798
Ver los metadatos del registro completo
id |
SEDICI_443acfe36a91f691caafc66c09a984eb |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/152798 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Botnet Behavior Detection using Network SynchronismGarcía, SebastiánZunino, AlejandroCampo, MarceloCiencias InformáticasBotnetdetectionclusteringEM algorithmsecurityBotnets diversity and dynamism challenge detection and classification algorithms, which depend heavily on botnets protocol and can quickly become avoidable. A more general detection method, then, was needed. We propose an analysis of their most inherent characteristics, like synchronism and network load combined with a detailed analysis of error rates. Not relying in any specific botnet technology or protocol, our classification approach sought to detect synchronic behavioral patterns in network traffic flows and clustered them based on botnets characteristics. Different botnet and normal captures were taken and a time slice approach was used to successfully separate them. Results show that botnets and normal computers traffic can be accurately detected by our approach and thus enhance detection effectiveness.Sociedad Argentina de Informática e Investigación Operativa2010info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1739-1750http://sedici.unlp.edu.ar/handle/10915/152798enginfo:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39-jaiio-ast-21.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2806info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T10:22:03Zoai:sedici.unlp.edu.ar:10915/152798Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 10:22:03.62SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Botnet Behavior Detection using Network Synchronism |
title |
Botnet Behavior Detection using Network Synchronism |
spellingShingle |
Botnet Behavior Detection using Network Synchronism García, Sebastián Ciencias Informáticas Botnet detection clustering EM algorithm security |
title_short |
Botnet Behavior Detection using Network Synchronism |
title_full |
Botnet Behavior Detection using Network Synchronism |
title_fullStr |
Botnet Behavior Detection using Network Synchronism |
title_full_unstemmed |
Botnet Behavior Detection using Network Synchronism |
title_sort |
Botnet Behavior Detection using Network Synchronism |
dc.creator.none.fl_str_mv |
García, Sebastián Zunino, Alejandro Campo, Marcelo |
author |
García, Sebastián |
author_facet |
García, Sebastián Zunino, Alejandro Campo, Marcelo |
author_role |
author |
author2 |
Zunino, Alejandro Campo, Marcelo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Botnet detection clustering EM algorithm security |
topic |
Ciencias Informáticas Botnet detection clustering EM algorithm security |
dc.description.none.fl_txt_mv |
Botnets diversity and dynamism challenge detection and classification algorithms, which depend heavily on botnets protocol and can quickly become avoidable. A more general detection method, then, was needed. We propose an analysis of their most inherent characteristics, like synchronism and network load combined with a detailed analysis of error rates. Not relying in any specific botnet technology or protocol, our classification approach sought to detect synchronic behavioral patterns in network traffic flows and clustered them based on botnets characteristics. Different botnet and normal captures were taken and a time slice approach was used to successfully separate them. Results show that botnets and normal computers traffic can be accurately detected by our approach and thus enhance detection effectiveness. Sociedad Argentina de Informática e Investigación Operativa |
description |
Botnets diversity and dynamism challenge detection and classification algorithms, which depend heavily on botnets protocol and can quickly become avoidable. A more general detection method, then, was needed. We propose an analysis of their most inherent characteristics, like synchronism and network load combined with a detailed analysis of error rates. Not relying in any specific botnet technology or protocol, our classification approach sought to detect synchronic behavioral patterns in network traffic flows and clustered them based on botnets characteristics. Different botnet and normal captures were taken and a time slice approach was used to successfully separate them. Results show that botnets and normal computers traffic can be accurately detected by our approach and thus enhance detection effectiveness. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/152798 |
url |
http://sedici.unlp.edu.ar/handle/10915/152798 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39-jaiio-ast-21.pdf info:eu-repo/semantics/altIdentifier/issn/1850-2806 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1739-1750 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532930058551296 |
score |
13.004268 |