Algoritmos evolutivos distribuidos para mantener diversidad poblacional
- Autores
- Salto, Carolina; Minetti, Gabriela F.; Alfonso, Hugo
- Año de publicación
- 2004
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Cuando el Algoritmo Evolutivo no logra equilibrar la exploración y la explotación del espacio de búsqueda es muy probable que se pierda diversidad poblacional. Tal inconveniente puede solucionarse con modelos de algoritmos evolutivos distribuidos, los cuales mantienen varias subpoblaciones (islas) en paralelo procesándolas con algoritmos evolutivos independientes entre sí. Las islas, por medio de mecanismos de migración, intercambian material genético. Las configuraciones de los algoritmos evolutivos que se aplican a las subpoblaciones pueden ser distintas, obteniéndose de esta manera algoritmos evolutivos distribuidos heterogéneos. Estos últimos representan un camino promisorio para un mejor balance entre exploración y explotación; evitando la pérdida de diversidad genética y alcanzando buenas soluciones finales aproximadas. Esta línea de investigación estudia los efectos producidos por el uso de diversas configuraciones en cada una de las islas, para que en ellas se logre un comportamiento evolutivo diferente, para mantener la diversidad poblacional y fundamentalmente conseguir soluciones de calidad.
Eje: Sistemas de información y Metaheurística
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
información
Algoritmos Evolutivos Paralelos
Evolución
Algorithms
Modelo Isla
Heterogeneidad
Homogeneidad
Optimización
Diversidad Poblacional - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21352
Ver los metadatos del registro completo
id |
SEDICI_1c795ad0284cd632d9282de10dec4d5a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21352 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Algoritmos evolutivos distribuidos para mantener diversidad poblacionalSalto, CarolinaMinetti, Gabriela F.Alfonso, HugoCiencias InformáticasinformaciónAlgoritmos Evolutivos ParalelosEvoluciónAlgorithmsModelo IslaHeterogeneidadHomogeneidadOptimizaciónDiversidad PoblacionalCuando el Algoritmo Evolutivo no logra equilibrar la exploración y la explotación del espacio de búsqueda es muy probable que se pierda diversidad poblacional. Tal inconveniente puede solucionarse con modelos de algoritmos evolutivos distribuidos, los cuales mantienen varias subpoblaciones (islas) en paralelo procesándolas con algoritmos evolutivos independientes entre sí. Las islas, por medio de mecanismos de migración, intercambian material genético. Las configuraciones de los algoritmos evolutivos que se aplican a las subpoblaciones pueden ser distintas, obteniéndose de esta manera algoritmos evolutivos distribuidos heterogéneos. Estos últimos representan un camino promisorio para un mejor balance entre exploración y explotación; evitando la pérdida de diversidad genética y alcanzando buenas soluciones finales aproximadas. Esta línea de investigación estudia los efectos producidos por el uso de diversas configuraciones en cada una de las islas, para que en ellas se logre un comportamiento evolutivo diferente, para mantener la diversidad poblacional y fundamentalmente conseguir soluciones de calidad.Eje: Sistemas de información y MetaheurísticaRed de Universidades con Carreras en Informática (RedUNCI)2004-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf558-561http://sedici.unlp.edu.ar/handle/10915/21352spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:37Zoai:sedici.unlp.edu.ar:10915/21352Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:37.47SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Algoritmos evolutivos distribuidos para mantener diversidad poblacional |
title |
Algoritmos evolutivos distribuidos para mantener diversidad poblacional |
spellingShingle |
Algoritmos evolutivos distribuidos para mantener diversidad poblacional Salto, Carolina Ciencias Informáticas información Algoritmos Evolutivos Paralelos Evolución Algorithms Modelo Isla Heterogeneidad Homogeneidad Optimización Diversidad Poblacional |
title_short |
Algoritmos evolutivos distribuidos para mantener diversidad poblacional |
title_full |
Algoritmos evolutivos distribuidos para mantener diversidad poblacional |
title_fullStr |
Algoritmos evolutivos distribuidos para mantener diversidad poblacional |
title_full_unstemmed |
Algoritmos evolutivos distribuidos para mantener diversidad poblacional |
title_sort |
Algoritmos evolutivos distribuidos para mantener diversidad poblacional |
dc.creator.none.fl_str_mv |
Salto, Carolina Minetti, Gabriela F. Alfonso, Hugo |
author |
Salto, Carolina |
author_facet |
Salto, Carolina Minetti, Gabriela F. Alfonso, Hugo |
author_role |
author |
author2 |
Minetti, Gabriela F. Alfonso, Hugo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas información Algoritmos Evolutivos Paralelos Evolución Algorithms Modelo Isla Heterogeneidad Homogeneidad Optimización Diversidad Poblacional |
topic |
Ciencias Informáticas información Algoritmos Evolutivos Paralelos Evolución Algorithms Modelo Isla Heterogeneidad Homogeneidad Optimización Diversidad Poblacional |
dc.description.none.fl_txt_mv |
Cuando el Algoritmo Evolutivo no logra equilibrar la exploración y la explotación del espacio de búsqueda es muy probable que se pierda diversidad poblacional. Tal inconveniente puede solucionarse con modelos de algoritmos evolutivos distribuidos, los cuales mantienen varias subpoblaciones (islas) en paralelo procesándolas con algoritmos evolutivos independientes entre sí. Las islas, por medio de mecanismos de migración, intercambian material genético. Las configuraciones de los algoritmos evolutivos que se aplican a las subpoblaciones pueden ser distintas, obteniéndose de esta manera algoritmos evolutivos distribuidos heterogéneos. Estos últimos representan un camino promisorio para un mejor balance entre exploración y explotación; evitando la pérdida de diversidad genética y alcanzando buenas soluciones finales aproximadas. Esta línea de investigación estudia los efectos producidos por el uso de diversas configuraciones en cada una de las islas, para que en ellas se logre un comportamiento evolutivo diferente, para mantener la diversidad poblacional y fundamentalmente conseguir soluciones de calidad. Eje: Sistemas de información y Metaheurística Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Cuando el Algoritmo Evolutivo no logra equilibrar la exploración y la explotación del espacio de búsqueda es muy probable que se pierda diversidad poblacional. Tal inconveniente puede solucionarse con modelos de algoritmos evolutivos distribuidos, los cuales mantienen varias subpoblaciones (islas) en paralelo procesándolas con algoritmos evolutivos independientes entre sí. Las islas, por medio de mecanismos de migración, intercambian material genético. Las configuraciones de los algoritmos evolutivos que se aplican a las subpoblaciones pueden ser distintas, obteniéndose de esta manera algoritmos evolutivos distribuidos heterogéneos. Estos últimos representan un camino promisorio para un mejor balance entre exploración y explotación; evitando la pérdida de diversidad genética y alcanzando buenas soluciones finales aproximadas. Esta línea de investigación estudia los efectos producidos por el uso de diversas configuraciones en cada una de las islas, para que en ellas se logre un comportamiento evolutivo diferente, para mantener la diversidad poblacional y fundamentalmente conseguir soluciones de calidad. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21352 |
url |
http://sedici.unlp.edu.ar/handle/10915/21352 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 558-561 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615803736948736 |
score |
13.070432 |