Peiffer elements in simplicial groups and algebras
- Autores
- Castiglioni, José Luis; Ladra, M.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The main objective of this paper is to prove in full generality the following two facts: A. For an operad O in Ab, let A be a simplicial O-algebra such that Am is generated as an O-ideal by (∑i = 0m-1 si (Am-1)), for m > 1, and let NA be the Moore complex of A. Then d(NmA) = ∑Iγ (Op⊗ ∩ i∈I1 ker di ⊗ ⋯ ⊗ ∩ i∈Ip ker di) where the sum runs over those partitions of [m - 1], I = (I1, ..., Ip), p ≥ 1, and γ is the action of O on A. B. Let G be a simplicial group with Moore complex NG in which Gn is generated as a normal subgroup by the degenerate elements in dimensionn > 1, then d (NnG) = ∏I, J [∩i∈I ker di, ∩i∈J ker dj], for I, J ⊆ [n - 1] with I ∪ J = [n - 1]. In both cases, di is the i-th face of the corresponding simplicial object. The former result completes and generalizes results from Akça and Arvasi [I. Akça, Z. Arvasi, Simplicial and crossed Lie algebras, Homology Homotopy Appl. 4 (1) (2002) 43-57], and Arvasi and Porter [Z. Arvasi, T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ. 3 (1) (1997) 1-23]; the latter completes a result from Mutlu and Porter [A. Mutlu, T. Porter, Applications of Peiffer pairings in the Moore complex of a simplicial group, Theory Appl. Categ. 4 (7) (1998) 148-173]. Our approach to the problem is different from that of the cited works. We have first succeeded with a proof for the case of algebras over an operad by introducing a different description of the inverse of the normalization functor N:AbΔop → Ch≥ 0. For the case of simplicial groups, we have then adapted the construction for the inverse equivalence used for algebras to get a simplicial group NG ⊠ Λ from the Moore complex N G of a simplicial group G. This construction could be of interest in itself.
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Matemática
Peiffer elements
algebras
simplicial groups - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/84202
Ver los metadatos del registro completo
id |
SEDICI_19a1b2ce4ee43b88fc59e0f2d85708cd |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/84202 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Peiffer elements in simplicial groups and algebrasCastiglioni, José LuisLadra, M.Ciencias ExactasMatemáticaPeiffer elementsalgebrassimplicial groupsThe main objective of this paper is to prove in full generality the following two facts: A. For an operad O in Ab, let A be a simplicial O-algebra such that A<SUB>m</SUB> is generated as an O-ideal by (∑<SUB>i = 0</SUB><SUP>m-1</SUP> s<SUB>i</SUB> (A<SUB>m-1</SUB>)), for m > 1, and let NA be the Moore complex of A. Then d(N<SUB>m</SUB>A) = ∑<SUB>I</SUB>γ (Op⊗ ∩ <SUB>i∈I<sub>1</sub></SUB> ker d<SUB>i</SUB> ⊗ ⋯ ⊗ ∩ <SUB>i∈I<sub>p</sub></SUB> ker d<SUB>i</SUB>) where the sum runs over those partitions of [m - 1], I = (I<SUB>1</SUB>, ..., I<SUB>p</SUB>), p ≥ 1, and γ is the action of O on A. B. Let G be a simplicial group with Moore complex NG in which G<SUB>n</SUB> is generated as a normal subgroup by the degenerate elements in dimensionn > 1, then d (N<SUB>n</SUB>G) = ∏I, J [∩<SUB>i∈I</SUB> ker d<SUB>i</SUB>, ∩<SUB>i∈J</SUB> ker d<SUB>j</SUB>], for I, J ⊆ [n - 1] with I ∪ J = [n - 1]. In both cases, d<SUB>i</SUB> is the i-th face of the corresponding simplicial object. The former result completes and generalizes results from Akça and Arvasi [I. Akça, Z. Arvasi, Simplicial and crossed Lie algebras, Homology Homotopy Appl. 4 (1) (2002) 43-57], and Arvasi and Porter [Z. Arvasi, T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ. 3 (1) (1997) 1-23]; the latter completes a result from Mutlu and Porter [A. Mutlu, T. Porter, Applications of Peiffer pairings in the Moore complex of a simplicial group, Theory Appl. Categ. 4 (7) (1998) 148-173]. Our approach to the problem is different from that of the cited works. We have first succeeded with a proof for the case of algebras over an operad by introducing a different description of the inverse of the normalization functor N:Ab<SUP>Δ<sup>op</sup></SUP> → Ch≥ 0. For the case of simplicial groups, we have then adapted the construction for the inverse equivalence used for algebras to get a simplicial group NG ⊠ Λ from the Moore complex N G of a simplicial group G. This construction could be of interest in itself.Facultad de Ciencias Exactas2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2115-2128http://sedici.unlp.edu.ar/handle/10915/84202enginfo:eu-repo/semantics/altIdentifier/issn/0022-4049info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2007.11.016info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:57:02Zoai:sedici.unlp.edu.ar:10915/84202Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:57:02.928SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Peiffer elements in simplicial groups and algebras |
title |
Peiffer elements in simplicial groups and algebras |
spellingShingle |
Peiffer elements in simplicial groups and algebras Castiglioni, José Luis Ciencias Exactas Matemática Peiffer elements algebras simplicial groups |
title_short |
Peiffer elements in simplicial groups and algebras |
title_full |
Peiffer elements in simplicial groups and algebras |
title_fullStr |
Peiffer elements in simplicial groups and algebras |
title_full_unstemmed |
Peiffer elements in simplicial groups and algebras |
title_sort |
Peiffer elements in simplicial groups and algebras |
dc.creator.none.fl_str_mv |
Castiglioni, José Luis Ladra, M. |
author |
Castiglioni, José Luis |
author_facet |
Castiglioni, José Luis Ladra, M. |
author_role |
author |
author2 |
Ladra, M. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Matemática Peiffer elements algebras simplicial groups |
topic |
Ciencias Exactas Matemática Peiffer elements algebras simplicial groups |
dc.description.none.fl_txt_mv |
The main objective of this paper is to prove in full generality the following two facts: A. For an operad O in Ab, let A be a simplicial O-algebra such that A<SUB>m</SUB> is generated as an O-ideal by (∑<SUB>i = 0</SUB><SUP>m-1</SUP> s<SUB>i</SUB> (A<SUB>m-1</SUB>)), for m > 1, and let NA be the Moore complex of A. Then d(N<SUB>m</SUB>A) = ∑<SUB>I</SUB>γ (Op⊗ ∩ <SUB>i∈I<sub>1</sub></SUB> ker d<SUB>i</SUB> ⊗ ⋯ ⊗ ∩ <SUB>i∈I<sub>p</sub></SUB> ker d<SUB>i</SUB>) where the sum runs over those partitions of [m - 1], I = (I<SUB>1</SUB>, ..., I<SUB>p</SUB>), p ≥ 1, and γ is the action of O on A. B. Let G be a simplicial group with Moore complex NG in which G<SUB>n</SUB> is generated as a normal subgroup by the degenerate elements in dimensionn > 1, then d (N<SUB>n</SUB>G) = ∏I, J [∩<SUB>i∈I</SUB> ker d<SUB>i</SUB>, ∩<SUB>i∈J</SUB> ker d<SUB>j</SUB>], for I, J ⊆ [n - 1] with I ∪ J = [n - 1]. In both cases, d<SUB>i</SUB> is the i-th face of the corresponding simplicial object. The former result completes and generalizes results from Akça and Arvasi [I. Akça, Z. Arvasi, Simplicial and crossed Lie algebras, Homology Homotopy Appl. 4 (1) (2002) 43-57], and Arvasi and Porter [Z. Arvasi, T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ. 3 (1) (1997) 1-23]; the latter completes a result from Mutlu and Porter [A. Mutlu, T. Porter, Applications of Peiffer pairings in the Moore complex of a simplicial group, Theory Appl. Categ. 4 (7) (1998) 148-173]. Our approach to the problem is different from that of the cited works. We have first succeeded with a proof for the case of algebras over an operad by introducing a different description of the inverse of the normalization functor N:Ab<SUP>Δ<sup>op</sup></SUP> → Ch≥ 0. For the case of simplicial groups, we have then adapted the construction for the inverse equivalence used for algebras to get a simplicial group NG ⊠ Λ from the Moore complex N G of a simplicial group G. This construction could be of interest in itself. Facultad de Ciencias Exactas |
description |
The main objective of this paper is to prove in full generality the following two facts: A. For an operad O in Ab, let A be a simplicial O-algebra such that A<SUB>m</SUB> is generated as an O-ideal by (∑<SUB>i = 0</SUB><SUP>m-1</SUP> s<SUB>i</SUB> (A<SUB>m-1</SUB>)), for m > 1, and let NA be the Moore complex of A. Then d(N<SUB>m</SUB>A) = ∑<SUB>I</SUB>γ (Op⊗ ∩ <SUB>i∈I<sub>1</sub></SUB> ker d<SUB>i</SUB> ⊗ ⋯ ⊗ ∩ <SUB>i∈I<sub>p</sub></SUB> ker d<SUB>i</SUB>) where the sum runs over those partitions of [m - 1], I = (I<SUB>1</SUB>, ..., I<SUB>p</SUB>), p ≥ 1, and γ is the action of O on A. B. Let G be a simplicial group with Moore complex NG in which G<SUB>n</SUB> is generated as a normal subgroup by the degenerate elements in dimensionn > 1, then d (N<SUB>n</SUB>G) = ∏I, J [∩<SUB>i∈I</SUB> ker d<SUB>i</SUB>, ∩<SUB>i∈J</SUB> ker d<SUB>j</SUB>], for I, J ⊆ [n - 1] with I ∪ J = [n - 1]. In both cases, d<SUB>i</SUB> is the i-th face of the corresponding simplicial object. The former result completes and generalizes results from Akça and Arvasi [I. Akça, Z. Arvasi, Simplicial and crossed Lie algebras, Homology Homotopy Appl. 4 (1) (2002) 43-57], and Arvasi and Porter [Z. Arvasi, T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ. 3 (1) (1997) 1-23]; the latter completes a result from Mutlu and Porter [A. Mutlu, T. Porter, Applications of Peiffer pairings in the Moore complex of a simplicial group, Theory Appl. Categ. 4 (7) (1998) 148-173]. Our approach to the problem is different from that of the cited works. We have first succeeded with a proof for the case of algebras over an operad by introducing a different description of the inverse of the normalization functor N:Ab<SUP>Δ<sup>op</sup></SUP> → Ch≥ 0. For the case of simplicial groups, we have then adapted the construction for the inverse equivalence used for algebras to get a simplicial group NG ⊠ Λ from the Moore complex N G of a simplicial group G. This construction could be of interest in itself. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/84202 |
url |
http://sedici.unlp.edu.ar/handle/10915/84202 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0022-4049 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2007.11.016 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 2115-2128 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846783180884934656 |
score |
12.982451 |