Peiffer elements in simplicial groups and algebras

Autores
Castiglioni, José Luis; Ladra, M.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The main objective of this paper is to prove in full generality the following two facts: A. For an operad O in Ab, let A be a simplicial O-algebra such that Am is generated as an O-ideal by (∑i = 0m-1 si (Am-1)), for m > 1, and let NA be the Moore complex of A. Then d(NmA) = ∑Iγ (Op⊗ ∩ i∈I1 ker di ⊗ ⋯ ⊗ ∩ i∈Ip ker di) where the sum runs over those partitions of [m - 1], I = (I1, ..., Ip), p ≥ 1, and γ is the action of O on A. B. Let G be a simplicial group with Moore complex NG in which Gn is generated as a normal subgroup by the degenerate elements in dimensionn > 1, then d (NnG) = ∏I, J [∩i∈I ker di, ∩i∈J ker dj], for I, J ⊆ [n - 1] with I ∪ J = [n - 1]. In both cases, di is the i-th face of the corresponding simplicial object. The former result completes and generalizes results from Akça and Arvasi [I. Akça, Z. Arvasi, Simplicial and crossed Lie algebras, Homology Homotopy Appl. 4 (1) (2002) 43-57], and Arvasi and Porter [Z. Arvasi, T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ. 3 (1) (1997) 1-23]; the latter completes a result from Mutlu and Porter [A. Mutlu, T. Porter, Applications of Peiffer pairings in the Moore complex of a simplicial group, Theory Appl. Categ. 4 (7) (1998) 148-173]. Our approach to the problem is different from that of the cited works. We have first succeeded with a proof for the case of algebras over an operad by introducing a different description of the inverse of the normalization functor N:AbΔop → Ch≥ 0. For the case of simplicial groups, we have then adapted the construction for the inverse equivalence used for algebras to get a simplicial group NG ⊠ Λ from the Moore complex N G of a simplicial group G. This construction could be of interest in itself.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Matemática
Peiffer elements
algebras
simplicial groups
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84202

id SEDICI_19a1b2ce4ee43b88fc59e0f2d85708cd
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84202
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Peiffer elements in simplicial groups and algebrasCastiglioni, José LuisLadra, M.Ciencias ExactasMatemáticaPeiffer elementsalgebrassimplicial groupsThe main objective of this paper is to prove in full generality the following two facts: A. For an operad O in Ab, let A be a simplicial O-algebra such that A<SUB>m</SUB> is generated as an O-ideal by (∑<SUB>i = 0</SUB><SUP>m-1</SUP> s<SUB>i</SUB> (A<SUB>m-1</SUB>)), for m > 1, and let NA be the Moore complex of A. Then d(N<SUB>m</SUB>A) = ∑<SUB>I</SUB>γ (Op⊗ ∩ <SUB>i∈I<sub>1</sub></SUB> ker d<SUB>i</SUB> ⊗ ⋯ ⊗ ∩ <SUB>i∈I<sub>p</sub></SUB> ker d<SUB>i</SUB>) where the sum runs over those partitions of [m - 1], I = (I<SUB>1</SUB>, ..., I<SUB>p</SUB>), p ≥ 1, and γ is the action of O on A. B. Let G be a simplicial group with Moore complex NG in which G<SUB>n</SUB> is generated as a normal subgroup by the degenerate elements in dimensionn > 1, then d (N<SUB>n</SUB>G) = ∏I, J [∩<SUB>i∈I</SUB> ker d<SUB>i</SUB>, ∩<SUB>i∈J</SUB> ker d<SUB>j</SUB>], for I, J ⊆ [n - 1] with I ∪ J = [n - 1]. In both cases, d<SUB>i</SUB> is the i-th face of the corresponding simplicial object. The former result completes and generalizes results from Akça and Arvasi [I. Akça, Z. Arvasi, Simplicial and crossed Lie algebras, Homology Homotopy Appl. 4 (1) (2002) 43-57], and Arvasi and Porter [Z. Arvasi, T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ. 3 (1) (1997) 1-23]; the latter completes a result from Mutlu and Porter [A. Mutlu, T. Porter, Applications of Peiffer pairings in the Moore complex of a simplicial group, Theory Appl. Categ. 4 (7) (1998) 148-173]. Our approach to the problem is different from that of the cited works. We have first succeeded with a proof for the case of algebras over an operad by introducing a different description of the inverse of the normalization functor N:Ab<SUP>Δ<sup>op</sup></SUP> → Ch≥ 0. For the case of simplicial groups, we have then adapted the construction for the inverse equivalence used for algebras to get a simplicial group NG ⊠ Λ from the Moore complex N G of a simplicial group G. This construction could be of interest in itself.Facultad de Ciencias Exactas2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2115-2128http://sedici.unlp.edu.ar/handle/10915/84202enginfo:eu-repo/semantics/altIdentifier/issn/0022-4049info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2007.11.016info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:57:02Zoai:sedici.unlp.edu.ar:10915/84202Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:57:02.928SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Peiffer elements in simplicial groups and algebras
title Peiffer elements in simplicial groups and algebras
spellingShingle Peiffer elements in simplicial groups and algebras
Castiglioni, José Luis
Ciencias Exactas
Matemática
Peiffer elements
algebras
simplicial groups
title_short Peiffer elements in simplicial groups and algebras
title_full Peiffer elements in simplicial groups and algebras
title_fullStr Peiffer elements in simplicial groups and algebras
title_full_unstemmed Peiffer elements in simplicial groups and algebras
title_sort Peiffer elements in simplicial groups and algebras
dc.creator.none.fl_str_mv Castiglioni, José Luis
Ladra, M.
author Castiglioni, José Luis
author_facet Castiglioni, José Luis
Ladra, M.
author_role author
author2 Ladra, M.
author2_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Matemática
Peiffer elements
algebras
simplicial groups
topic Ciencias Exactas
Matemática
Peiffer elements
algebras
simplicial groups
dc.description.none.fl_txt_mv The main objective of this paper is to prove in full generality the following two facts: A. For an operad O in Ab, let A be a simplicial O-algebra such that A<SUB>m</SUB> is generated as an O-ideal by (∑<SUB>i = 0</SUB><SUP>m-1</SUP> s<SUB>i</SUB> (A<SUB>m-1</SUB>)), for m > 1, and let NA be the Moore complex of A. Then d(N<SUB>m</SUB>A) = ∑<SUB>I</SUB>γ (Op⊗ ∩ <SUB>i∈I<sub>1</sub></SUB> ker d<SUB>i</SUB> ⊗ ⋯ ⊗ ∩ <SUB>i∈I<sub>p</sub></SUB> ker d<SUB>i</SUB>) where the sum runs over those partitions of [m - 1], I = (I<SUB>1</SUB>, ..., I<SUB>p</SUB>), p ≥ 1, and γ is the action of O on A. B. Let G be a simplicial group with Moore complex NG in which G<SUB>n</SUB> is generated as a normal subgroup by the degenerate elements in dimensionn > 1, then d (N<SUB>n</SUB>G) = ∏I, J [∩<SUB>i∈I</SUB> ker d<SUB>i</SUB>, ∩<SUB>i∈J</SUB> ker d<SUB>j</SUB>], for I, J ⊆ [n - 1] with I ∪ J = [n - 1]. In both cases, d<SUB>i</SUB> is the i-th face of the corresponding simplicial object. The former result completes and generalizes results from Akça and Arvasi [I. Akça, Z. Arvasi, Simplicial and crossed Lie algebras, Homology Homotopy Appl. 4 (1) (2002) 43-57], and Arvasi and Porter [Z. Arvasi, T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ. 3 (1) (1997) 1-23]; the latter completes a result from Mutlu and Porter [A. Mutlu, T. Porter, Applications of Peiffer pairings in the Moore complex of a simplicial group, Theory Appl. Categ. 4 (7) (1998) 148-173]. Our approach to the problem is different from that of the cited works. We have first succeeded with a proof for the case of algebras over an operad by introducing a different description of the inverse of the normalization functor N:Ab<SUP>Δ<sup>op</sup></SUP> → Ch≥ 0. For the case of simplicial groups, we have then adapted the construction for the inverse equivalence used for algebras to get a simplicial group NG ⊠ Λ from the Moore complex N G of a simplicial group G. This construction could be of interest in itself.
Facultad de Ciencias Exactas
description The main objective of this paper is to prove in full generality the following two facts: A. For an operad O in Ab, let A be a simplicial O-algebra such that A<SUB>m</SUB> is generated as an O-ideal by (∑<SUB>i = 0</SUB><SUP>m-1</SUP> s<SUB>i</SUB> (A<SUB>m-1</SUB>)), for m > 1, and let NA be the Moore complex of A. Then d(N<SUB>m</SUB>A) = ∑<SUB>I</SUB>γ (Op⊗ ∩ <SUB>i∈I<sub>1</sub></SUB> ker d<SUB>i</SUB> ⊗ ⋯ ⊗ ∩ <SUB>i∈I<sub>p</sub></SUB> ker d<SUB>i</SUB>) where the sum runs over those partitions of [m - 1], I = (I<SUB>1</SUB>, ..., I<SUB>p</SUB>), p ≥ 1, and γ is the action of O on A. B. Let G be a simplicial group with Moore complex NG in which G<SUB>n</SUB> is generated as a normal subgroup by the degenerate elements in dimensionn > 1, then d (N<SUB>n</SUB>G) = ∏I, J [∩<SUB>i∈I</SUB> ker d<SUB>i</SUB>, ∩<SUB>i∈J</SUB> ker d<SUB>j</SUB>], for I, J ⊆ [n - 1] with I ∪ J = [n - 1]. In both cases, d<SUB>i</SUB> is the i-th face of the corresponding simplicial object. The former result completes and generalizes results from Akça and Arvasi [I. Akça, Z. Arvasi, Simplicial and crossed Lie algebras, Homology Homotopy Appl. 4 (1) (2002) 43-57], and Arvasi and Porter [Z. Arvasi, T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ. 3 (1) (1997) 1-23]; the latter completes a result from Mutlu and Porter [A. Mutlu, T. Porter, Applications of Peiffer pairings in the Moore complex of a simplicial group, Theory Appl. Categ. 4 (7) (1998) 148-173]. Our approach to the problem is different from that of the cited works. We have first succeeded with a proof for the case of algebras over an operad by introducing a different description of the inverse of the normalization functor N:Ab<SUP>Δ<sup>op</sup></SUP> → Ch≥ 0. For the case of simplicial groups, we have then adapted the construction for the inverse equivalence used for algebras to get a simplicial group NG ⊠ Λ from the Moore complex N G of a simplicial group G. This construction could be of interest in itself.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84202
url http://sedici.unlp.edu.ar/handle/10915/84202
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0022-4049
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2007.11.016
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
2115-2128
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783180884934656
score 12.982451