Covering functors without groups
- Autores
- De la Peña Mena, José Antonio; Redondo, Maria Julia
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Coverings in the representation theory of algebras were introduced for the Auslander-Reiten quiver of a representation-finite algebra in [Ch. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurüch, Comment. Math. Helv. 55 (1980) 199-224] and later for finite-dimensional algebras in [K. Bongartz, P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (3) (1982) 331-378; P. Gabriel, The universal cover of a representation-finite algebra, in: Proc. Representation Theory I, Puebla, 1980, in: Lecture Notes in Math., vol. 903, Springer, 1981, pp. 68-105; R. Martínez-Villa, J.A. de la Peña, The universal cover of a quiver with relations, J. Pure Appl. Algebra 30 (3) (1983) 277-292]. The best understood class of covering functors is that of Galois covering functorsF : A → B determined by the action of a group of automorphisms of A. In this work we introduce the balanced covering functors which include the Galois class and for which classical Galois covering-type results still hold. For instance, if F : A → B is a balanced covering functor, where A and B are linear categories over an algebraically closed field, and B is tame, then A is tame.
Fil: De la Peña Mena, José Antonio. Universidad Nacional Autónoma de México; México
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
COVERINGS
REPRESENTATION
ALGEBRAS
GROUPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/79550
Ver los metadatos del registro completo
id |
CONICETDig_ab4ca9a321a65687d424b4d34512227e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/79550 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Covering functors without groupsDe la Peña Mena, José AntonioRedondo, Maria JuliaCOVERINGSREPRESENTATIONALGEBRASGROUPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Coverings in the representation theory of algebras were introduced for the Auslander-Reiten quiver of a representation-finite algebra in [Ch. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurüch, Comment. Math. Helv. 55 (1980) 199-224] and later for finite-dimensional algebras in [K. Bongartz, P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (3) (1982) 331-378; P. Gabriel, The universal cover of a representation-finite algebra, in: Proc. Representation Theory I, Puebla, 1980, in: Lecture Notes in Math., vol. 903, Springer, 1981, pp. 68-105; R. Martínez-Villa, J.A. de la Peña, The universal cover of a quiver with relations, J. Pure Appl. Algebra 30 (3) (1983) 277-292]. The best understood class of covering functors is that of Galois covering functorsF : A → B determined by the action of a group of automorphisms of A. In this work we introduce the balanced covering functors which include the Galois class and for which classical Galois covering-type results still hold. For instance, if F : A → B is a balanced covering functor, where A and B are linear categories over an algebraically closed field, and B is tame, then A is tame.Fil: De la Peña Mena, José Antonio. Universidad Nacional Autónoma de México; MéxicoFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAcademic Press Inc Elsevier Science2009-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79550De la Peña Mena, José Antonio; Redondo, Maria Julia; Covering functors without groups; Academic Press Inc Elsevier Science; Journal of Algebra; 321; 12; 6-2009; 3816-38260021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869309001483info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2009.02.023info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0803.4442info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:12:08Zoai:ri.conicet.gov.ar:11336/79550instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:12:08.945CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Covering functors without groups |
title |
Covering functors without groups |
spellingShingle |
Covering functors without groups De la Peña Mena, José Antonio COVERINGS REPRESENTATION ALGEBRAS GROUPS |
title_short |
Covering functors without groups |
title_full |
Covering functors without groups |
title_fullStr |
Covering functors without groups |
title_full_unstemmed |
Covering functors without groups |
title_sort |
Covering functors without groups |
dc.creator.none.fl_str_mv |
De la Peña Mena, José Antonio Redondo, Maria Julia |
author |
De la Peña Mena, José Antonio |
author_facet |
De la Peña Mena, José Antonio Redondo, Maria Julia |
author_role |
author |
author2 |
Redondo, Maria Julia |
author2_role |
author |
dc.subject.none.fl_str_mv |
COVERINGS REPRESENTATION ALGEBRAS GROUPS |
topic |
COVERINGS REPRESENTATION ALGEBRAS GROUPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Coverings in the representation theory of algebras were introduced for the Auslander-Reiten quiver of a representation-finite algebra in [Ch. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurüch, Comment. Math. Helv. 55 (1980) 199-224] and later for finite-dimensional algebras in [K. Bongartz, P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (3) (1982) 331-378; P. Gabriel, The universal cover of a representation-finite algebra, in: Proc. Representation Theory I, Puebla, 1980, in: Lecture Notes in Math., vol. 903, Springer, 1981, pp. 68-105; R. Martínez-Villa, J.A. de la Peña, The universal cover of a quiver with relations, J. Pure Appl. Algebra 30 (3) (1983) 277-292]. The best understood class of covering functors is that of Galois covering functorsF : A → B determined by the action of a group of automorphisms of A. In this work we introduce the balanced covering functors which include the Galois class and for which classical Galois covering-type results still hold. For instance, if F : A → B is a balanced covering functor, where A and B are linear categories over an algebraically closed field, and B is tame, then A is tame. Fil: De la Peña Mena, José Antonio. Universidad Nacional Autónoma de México; México Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
Coverings in the representation theory of algebras were introduced for the Auslander-Reiten quiver of a representation-finite algebra in [Ch. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurüch, Comment. Math. Helv. 55 (1980) 199-224] and later for finite-dimensional algebras in [K. Bongartz, P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (3) (1982) 331-378; P. Gabriel, The universal cover of a representation-finite algebra, in: Proc. Representation Theory I, Puebla, 1980, in: Lecture Notes in Math., vol. 903, Springer, 1981, pp. 68-105; R. Martínez-Villa, J.A. de la Peña, The universal cover of a quiver with relations, J. Pure Appl. Algebra 30 (3) (1983) 277-292]. The best understood class of covering functors is that of Galois covering functorsF : A → B determined by the action of a group of automorphisms of A. In this work we introduce the balanced covering functors which include the Galois class and for which classical Galois covering-type results still hold. For instance, if F : A → B is a balanced covering functor, where A and B are linear categories over an algebraically closed field, and B is tame, then A is tame. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/79550 De la Peña Mena, José Antonio; Redondo, Maria Julia; Covering functors without groups; Academic Press Inc Elsevier Science; Journal of Algebra; 321; 12; 6-2009; 3816-3826 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/79550 |
identifier_str_mv |
De la Peña Mena, José Antonio; Redondo, Maria Julia; Covering functors without groups; Academic Press Inc Elsevier Science; Journal of Algebra; 321; 12; 6-2009; 3816-3826 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869309001483 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2009.02.023 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0803.4442 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781510210813952 |
score |
12.982451 |