Diseño de redes de sensores utilizando modelos gráficos probabilísticos
- Autores
- Foricher, Azulilen; Hernández, José Luis; Carnero, Mercedes; Sánchez, Mabel
- Año de publicación
- 2014
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- En este trabajo se aborda el diseño óptimo de redes de sensores para plantas químicas utilizando estrategias de optimización estocásticas. El problema consiste en seleccionar el tipo, número y ubicación de los nuevos sensores que proporcionen la cantidad y calidad necesaria de la información requerida del proceso. En el diseño de redes de sensores la decisión importante que debe hacerse con respecto a cada variable de flujo es si ésta se mide o no. Para formular matemáticamente estas decisiones, se emplean variables binarias las cuales indican la presencia o ausencia de sensores. El problema suele ser multimodal e involucra, en casos reales, un gran número de variables binarias, por lo que debe ser resuelto un problema de optimización combinatoria sujeto a restricciones de gran tamaño. En estos casos, es muy valioso contar con un procedimiento de solución que proporcione, al menos, una buena solución, sino el óptimo global, y que además se pueda ejecutar en ordenadores paralelos para reducir los tiempos de ejecución. En este trabajo se aplican nuevas estrategias para resolver el problema de localización óptima de sensores basadas en los algoritmos de estimación de distribuciones que hacen uso de un modelo gráfico probabilístico, aprendido a partir del conjunto de soluciones más prometedoras. Se proporcionan las características distintivas de las metodologías propuestas así como su desempeño en la resolución de diferentes diseños de redes de instrumentación extraídos de la literatura.
Eje: XV Workshop de Agentes y Sistemas Inteligentes
Red de Universidades con Carreras de Informática (RedUNCI) - Materia
-
Ciencias Informáticas
redes de sensores
algoritmos evolutivos
algoritmos de estimación de distribuciones - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/42405
Ver los metadatos del registro completo
id |
SEDICI_0effa7cc4691cebca684c4bdc493c41a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/42405 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Diseño de redes de sensores utilizando modelos gráficos probabilísticosForicher, AzulilenHernández, José LuisCarnero, MercedesSánchez, MabelCiencias Informáticasredes de sensoresalgoritmos evolutivosalgoritmos de estimación de distribucionesEn este trabajo se aborda el diseño óptimo de redes de sensores para plantas químicas utilizando estrategias de optimización estocásticas. El problema consiste en seleccionar el tipo, número y ubicación de los nuevos sensores que proporcionen la cantidad y calidad necesaria de la información requerida del proceso. En el diseño de redes de sensores la decisión importante que debe hacerse con respecto a cada variable de flujo es si ésta se mide o no. Para formular matemáticamente estas decisiones, se emplean variables binarias las cuales indican la presencia o ausencia de sensores. El problema suele ser multimodal e involucra, en casos reales, un gran número de variables binarias, por lo que debe ser resuelto un problema de optimización combinatoria sujeto a restricciones de gran tamaño. En estos casos, es muy valioso contar con un procedimiento de solución que proporcione, al menos, una buena solución, sino el óptimo global, y que además se pueda ejecutar en ordenadores paralelos para reducir los tiempos de ejecución. En este trabajo se aplican nuevas estrategias para resolver el problema de localización óptima de sensores basadas en los algoritmos de estimación de distribuciones que hacen uso de un modelo gráfico probabilístico, aprendido a partir del conjunto de soluciones más prometedoras. Se proporcionan las características distintivas de las metodologías propuestas así como su desempeño en la resolución de diferentes diseños de redes de instrumentación extraídos de la literatura.Eje: XV Workshop de Agentes y Sistemas InteligentesRed de Universidades con Carreras de Informática (RedUNCI)2014-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/42405spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:01:23Zoai:sedici.unlp.edu.ar:10915/42405Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:01:24.107SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Diseño de redes de sensores utilizando modelos gráficos probabilísticos |
title |
Diseño de redes de sensores utilizando modelos gráficos probabilísticos |
spellingShingle |
Diseño de redes de sensores utilizando modelos gráficos probabilísticos Foricher, Azulilen Ciencias Informáticas redes de sensores algoritmos evolutivos algoritmos de estimación de distribuciones |
title_short |
Diseño de redes de sensores utilizando modelos gráficos probabilísticos |
title_full |
Diseño de redes de sensores utilizando modelos gráficos probabilísticos |
title_fullStr |
Diseño de redes de sensores utilizando modelos gráficos probabilísticos |
title_full_unstemmed |
Diseño de redes de sensores utilizando modelos gráficos probabilísticos |
title_sort |
Diseño de redes de sensores utilizando modelos gráficos probabilísticos |
dc.creator.none.fl_str_mv |
Foricher, Azulilen Hernández, José Luis Carnero, Mercedes Sánchez, Mabel |
author |
Foricher, Azulilen |
author_facet |
Foricher, Azulilen Hernández, José Luis Carnero, Mercedes Sánchez, Mabel |
author_role |
author |
author2 |
Hernández, José Luis Carnero, Mercedes Sánchez, Mabel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas redes de sensores algoritmos evolutivos algoritmos de estimación de distribuciones |
topic |
Ciencias Informáticas redes de sensores algoritmos evolutivos algoritmos de estimación de distribuciones |
dc.description.none.fl_txt_mv |
En este trabajo se aborda el diseño óptimo de redes de sensores para plantas químicas utilizando estrategias de optimización estocásticas. El problema consiste en seleccionar el tipo, número y ubicación de los nuevos sensores que proporcionen la cantidad y calidad necesaria de la información requerida del proceso. En el diseño de redes de sensores la decisión importante que debe hacerse con respecto a cada variable de flujo es si ésta se mide o no. Para formular matemáticamente estas decisiones, se emplean variables binarias las cuales indican la presencia o ausencia de sensores. El problema suele ser multimodal e involucra, en casos reales, un gran número de variables binarias, por lo que debe ser resuelto un problema de optimización combinatoria sujeto a restricciones de gran tamaño. En estos casos, es muy valioso contar con un procedimiento de solución que proporcione, al menos, una buena solución, sino el óptimo global, y que además se pueda ejecutar en ordenadores paralelos para reducir los tiempos de ejecución. En este trabajo se aplican nuevas estrategias para resolver el problema de localización óptima de sensores basadas en los algoritmos de estimación de distribuciones que hacen uso de un modelo gráfico probabilístico, aprendido a partir del conjunto de soluciones más prometedoras. Se proporcionan las características distintivas de las metodologías propuestas así como su desempeño en la resolución de diferentes diseños de redes de instrumentación extraídos de la literatura. Eje: XV Workshop de Agentes y Sistemas Inteligentes Red de Universidades con Carreras de Informática (RedUNCI) |
description |
En este trabajo se aborda el diseño óptimo de redes de sensores para plantas químicas utilizando estrategias de optimización estocásticas. El problema consiste en seleccionar el tipo, número y ubicación de los nuevos sensores que proporcionen la cantidad y calidad necesaria de la información requerida del proceso. En el diseño de redes de sensores la decisión importante que debe hacerse con respecto a cada variable de flujo es si ésta se mide o no. Para formular matemáticamente estas decisiones, se emplean variables binarias las cuales indican la presencia o ausencia de sensores. El problema suele ser multimodal e involucra, en casos reales, un gran número de variables binarias, por lo que debe ser resuelto un problema de optimización combinatoria sujeto a restricciones de gran tamaño. En estos casos, es muy valioso contar con un procedimiento de solución que proporcione, al menos, una buena solución, sino el óptimo global, y que además se pueda ejecutar en ordenadores paralelos para reducir los tiempos de ejecución. En este trabajo se aplican nuevas estrategias para resolver el problema de localización óptima de sensores basadas en los algoritmos de estimación de distribuciones que hacen uso de un modelo gráfico probabilístico, aprendido a partir del conjunto de soluciones más prometedoras. Se proporcionan las características distintivas de las metodologías propuestas así como su desempeño en la resolución de diferentes diseños de redes de instrumentación extraídos de la literatura. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/42405 |
url |
http://sedici.unlp.edu.ar/handle/10915/42405 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615880598618112 |
score |
13.070432 |