Experimental Framework to Simulate Rescue Operations after a Natural Disaster

Autores
Veas Castillo, Luis; Ovando León, Gabriel; Astudillo, Gabriel; Gil Costa, Verónica; Marín, Mauricio
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Computational simulation is a powerful tool for performance evaluation of computational systems. It is useful to make capacity planning of data center clusters, to obtain profiling reports of software applications and to detect bottlenecks. It has been used in different research areas like large scale Web search engines, natural disaster evacuations, computational biology, human behavior and tendency, among many others. However, properly tuning the parameters of the simulators, defining the scenarios to be simulated and collecting the data traces is not an easy task. It is an incremental process which requires constantly comparing the estimated metrics and the flow of simulated actions against real data. In this work, we present an experimental framework designed for the development of large scale simulations of two applications used upon the occurrence of a natural disaster strikes. The first one is a social application aimed to register volunteers and manage emergency campaigns and tasks. The second one is a benchmark application a data repository named MongoDB. The applications are deployed in a distributed platform which combines different technologies like a Proxy, a Containers Orchestrator, Containers and a NoSQL Database. We simulate both applications and the architecture platform. We validate our simulators using real traces collected during simulacrums of emergency situations.
La simulación computacional es una poderosa herramienta para evaluar el rendimiento de sistemas. Resulta útil para realizar el planeamiento de capacidad de clusters de Centros de Datos, para obtener perfiles de aplicaciones y detectar cuellos de botella. Se ha utilizado en diferentes áreas de investigación como buscadores web a gran escala, evacuaciones por desastres naturales, biología computacional, comportamiento y tendencia humana, entre otros. Sin embargo, ajustar correctamente los parámetros de los simuladores, definir los escenarios de simulación y recopilar los rastros de datos no es una tarea fácil. Es un proceso incremental que requiere contrastar constantemente las métricas estimadas y el flujo de acciones simuladas con datos reales. En este trabajo, presentamos el diseño de un marco experimental para el desarrollo de simulaciones a gran escala de aplicaciones sociales utilizadas después de un desastre natural. La primera es una aplicación social destinada a registrar voluntarios y gestionar campañas en emergencias y tareas. La segunda aplicación es un repositorio de datos llamado MongoDB. Las aplicaciones se depliegan en una plataforma distribuida que combina diferentes tecnologías como Proxy, Orquestador de Containers, Containers y una Base de Datos NoSQL. Simulamos ambas aplicaciones y la plataforma computational. Validamos nuestros simuladores utilizando trazas reales recopiladas durante simulacros.
Facultad de Informática
Materia
Ciencias Informáticas
Experimental framework
Simulation
Benchmark
Framework experimental
Simulación
Benchmark
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/107999

id SEDICI_08b4a15f304ae494d0b7ad3f97fa6734
oai_identifier_str oai:sedici.unlp.edu.ar:10915/107999
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Experimental Framework to Simulate Rescue Operations after a Natural DisasterFramework experimental para simular operaciones de rescate luego de un desastre naturalVeas Castillo, LuisOvando León, GabrielAstudillo, GabrielGil Costa, VerónicaMarín, MauricioCiencias InformáticasExperimental frameworkSimulationBenchmarkFramework experimentalSimulaciónBenchmarkComputational simulation is a powerful tool for performance evaluation of computational systems. It is useful to make capacity planning of data center clusters, to obtain profiling reports of software applications and to detect bottlenecks. It has been used in different research areas like large scale Web search engines, natural disaster evacuations, computational biology, human behavior and tendency, among many others. However, properly tuning the parameters of the simulators, defining the scenarios to be simulated and collecting the data traces is not an easy task. It is an incremental process which requires constantly comparing the estimated metrics and the flow of simulated actions against real data. In this work, we present an experimental framework designed for the development of large scale simulations of two applications used upon the occurrence of a natural disaster strikes. The first one is a social application aimed to register volunteers and manage emergency campaigns and tasks. The second one is a benchmark application a data repository named MongoDB. The applications are deployed in a distributed platform which combines different technologies like a Proxy, a Containers Orchestrator, Containers and a NoSQL Database. We simulate both applications and the architecture platform. We validate our simulators using real traces collected during simulacrums of emergency situations.La simulación computacional es una poderosa herramienta para evaluar el rendimiento de sistemas. Resulta útil para realizar el planeamiento de capacidad de clusters de Centros de Datos, para obtener perfiles de aplicaciones y detectar cuellos de botella. Se ha utilizado en diferentes áreas de investigación como buscadores web a gran escala, evacuaciones por desastres naturales, biología computacional, comportamiento y tendencia humana, entre otros. Sin embargo, ajustar correctamente los parámetros de los simuladores, definir los escenarios de simulación y recopilar los rastros de datos no es una tarea fácil. Es un proceso incremental que requiere contrastar constantemente las métricas estimadas y el flujo de acciones simuladas con datos reales. En este trabajo, presentamos el diseño de un marco experimental para el desarrollo de simulaciones a gran escala de aplicaciones sociales utilizadas después de un desastre natural. La primera es una aplicación social destinada a registrar voluntarios y gestionar campañas en emergencias y tareas. La segunda aplicación es un repositorio de datos llamado MongoDB. Las aplicaciones se depliegan en una plataforma distribuida que combina diferentes tecnologías como Proxy, Orquestador de Containers, Containers y una Base de Datos NoSQL. Simulamos ambas aplicaciones y la plataforma computational. Validamos nuestros simuladores utilizando trazas reales recopiladas durante simulacros.Facultad de Informática2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf62-71http://sedici.unlp.edu.ar/handle/10915/107999enginfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.20.e07info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:05:25Zoai:sedici.unlp.edu.ar:10915/107999Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:05:25.561SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Experimental Framework to Simulate Rescue Operations after a Natural Disaster
Framework experimental para simular operaciones de rescate luego de un desastre natural
title Experimental Framework to Simulate Rescue Operations after a Natural Disaster
spellingShingle Experimental Framework to Simulate Rescue Operations after a Natural Disaster
Veas Castillo, Luis
Ciencias Informáticas
Experimental framework
Simulation
Benchmark
Framework experimental
Simulación
Benchmark
title_short Experimental Framework to Simulate Rescue Operations after a Natural Disaster
title_full Experimental Framework to Simulate Rescue Operations after a Natural Disaster
title_fullStr Experimental Framework to Simulate Rescue Operations after a Natural Disaster
title_full_unstemmed Experimental Framework to Simulate Rescue Operations after a Natural Disaster
title_sort Experimental Framework to Simulate Rescue Operations after a Natural Disaster
dc.creator.none.fl_str_mv Veas Castillo, Luis
Ovando León, Gabriel
Astudillo, Gabriel
Gil Costa, Verónica
Marín, Mauricio
author Veas Castillo, Luis
author_facet Veas Castillo, Luis
Ovando León, Gabriel
Astudillo, Gabriel
Gil Costa, Verónica
Marín, Mauricio
author_role author
author2 Ovando León, Gabriel
Astudillo, Gabriel
Gil Costa, Verónica
Marín, Mauricio
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Experimental framework
Simulation
Benchmark
Framework experimental
Simulación
Benchmark
topic Ciencias Informáticas
Experimental framework
Simulation
Benchmark
Framework experimental
Simulación
Benchmark
dc.description.none.fl_txt_mv Computational simulation is a powerful tool for performance evaluation of computational systems. It is useful to make capacity planning of data center clusters, to obtain profiling reports of software applications and to detect bottlenecks. It has been used in different research areas like large scale Web search engines, natural disaster evacuations, computational biology, human behavior and tendency, among many others. However, properly tuning the parameters of the simulators, defining the scenarios to be simulated and collecting the data traces is not an easy task. It is an incremental process which requires constantly comparing the estimated metrics and the flow of simulated actions against real data. In this work, we present an experimental framework designed for the development of large scale simulations of two applications used upon the occurrence of a natural disaster strikes. The first one is a social application aimed to register volunteers and manage emergency campaigns and tasks. The second one is a benchmark application a data repository named MongoDB. The applications are deployed in a distributed platform which combines different technologies like a Proxy, a Containers Orchestrator, Containers and a NoSQL Database. We simulate both applications and the architecture platform. We validate our simulators using real traces collected during simulacrums of emergency situations.
La simulación computacional es una poderosa herramienta para evaluar el rendimiento de sistemas. Resulta útil para realizar el planeamiento de capacidad de clusters de Centros de Datos, para obtener perfiles de aplicaciones y detectar cuellos de botella. Se ha utilizado en diferentes áreas de investigación como buscadores web a gran escala, evacuaciones por desastres naturales, biología computacional, comportamiento y tendencia humana, entre otros. Sin embargo, ajustar correctamente los parámetros de los simuladores, definir los escenarios de simulación y recopilar los rastros de datos no es una tarea fácil. Es un proceso incremental que requiere contrastar constantemente las métricas estimadas y el flujo de acciones simuladas con datos reales. En este trabajo, presentamos el diseño de un marco experimental para el desarrollo de simulaciones a gran escala de aplicaciones sociales utilizadas después de un desastre natural. La primera es una aplicación social destinada a registrar voluntarios y gestionar campañas en emergencias y tareas. La segunda aplicación es un repositorio de datos llamado MongoDB. Las aplicaciones se depliegan en una plataforma distribuida que combina diferentes tecnologías como Proxy, Orquestador de Containers, Containers y una Base de Datos NoSQL. Simulamos ambas aplicaciones y la plataforma computational. Validamos nuestros simuladores utilizando trazas reales recopiladas durante simulacros.
Facultad de Informática
description Computational simulation is a powerful tool for performance evaluation of computational systems. It is useful to make capacity planning of data center clusters, to obtain profiling reports of software applications and to detect bottlenecks. It has been used in different research areas like large scale Web search engines, natural disaster evacuations, computational biology, human behavior and tendency, among many others. However, properly tuning the parameters of the simulators, defining the scenarios to be simulated and collecting the data traces is not an easy task. It is an incremental process which requires constantly comparing the estimated metrics and the flow of simulated actions against real data. In this work, we present an experimental framework designed for the development of large scale simulations of two applications used upon the occurrence of a natural disaster strikes. The first one is a social application aimed to register volunteers and manage emergency campaigns and tasks. The second one is a benchmark application a data repository named MongoDB. The applications are deployed in a distributed platform which combines different technologies like a Proxy, a Containers Orchestrator, Containers and a NoSQL Database. We simulate both applications and the architecture platform. We validate our simulators using real traces collected during simulacrums of emergency situations.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/107999
url http://sedici.unlp.edu.ar/handle/10915/107999
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1666-6038
info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.20.e07
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.format.none.fl_str_mv application/pdf
62-71
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783335223787520
score 12.982451