Automated benchmarking of peptide-MHC class i binding predictions

Autores
Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason A.; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto-bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto-bench/mhci/join.
Fil: Trolle, Thomas. Technical University of Denmark; Dinamarca
Fil: Metushi, Imir G.. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Greenbaum, Jason A.. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Kim, Yohan. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Lund, Ole. Technical University of Denmark; Dinamarca
Fil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Materia
Mhc
Benchmark
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/38180

id CONICETDig_179a1168ca0af99ed45038ebfaf7d880
oai_identifier_str oai:ri.conicet.gov.ar:11336/38180
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Automated benchmarking of peptide-MHC class i binding predictionsTrolle, ThomasMetushi, Imir G.Greenbaum, Jason A.Kim, YohanSidney, JohnLund, OleSette, AlessandroPeters, BjoernNielsen, MortenMhcBenchmarkhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto-bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto-bench/mhci/join.Fil: Trolle, Thomas. Technical University of Denmark; DinamarcaFil: Metushi, Imir G.. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Greenbaum, Jason A.. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Kim, Yohan. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Lund, Ole. Technical University of Denmark; DinamarcaFil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaOxford University Press2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38180Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason A.; Kim, Yohan; Sidney, John; et al.; Automated benchmarking of peptide-MHC class i binding predictions; Oxford University Press; Bioinformatics (Oxford, England); 31; 13; 7-2015; 2174-21811367-4803CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/bioinformatics/btv123info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article/31/13/2174/196331info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:16Zoai:ri.conicet.gov.ar:11336/38180instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:16.488CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Automated benchmarking of peptide-MHC class i binding predictions
title Automated benchmarking of peptide-MHC class i binding predictions
spellingShingle Automated benchmarking of peptide-MHC class i binding predictions
Trolle, Thomas
Mhc
Benchmark
title_short Automated benchmarking of peptide-MHC class i binding predictions
title_full Automated benchmarking of peptide-MHC class i binding predictions
title_fullStr Automated benchmarking of peptide-MHC class i binding predictions
title_full_unstemmed Automated benchmarking of peptide-MHC class i binding predictions
title_sort Automated benchmarking of peptide-MHC class i binding predictions
dc.creator.none.fl_str_mv Trolle, Thomas
Metushi, Imir G.
Greenbaum, Jason A.
Kim, Yohan
Sidney, John
Lund, Ole
Sette, Alessandro
Peters, Bjoern
Nielsen, Morten
author Trolle, Thomas
author_facet Trolle, Thomas
Metushi, Imir G.
Greenbaum, Jason A.
Kim, Yohan
Sidney, John
Lund, Ole
Sette, Alessandro
Peters, Bjoern
Nielsen, Morten
author_role author
author2 Metushi, Imir G.
Greenbaum, Jason A.
Kim, Yohan
Sidney, John
Lund, Ole
Sette, Alessandro
Peters, Bjoern
Nielsen, Morten
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Mhc
Benchmark
topic Mhc
Benchmark
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto-bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto-bench/mhci/join.
Fil: Trolle, Thomas. Technical University of Denmark; Dinamarca
Fil: Metushi, Imir G.. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Greenbaum, Jason A.. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Kim, Yohan. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Lund, Ole. Technical University of Denmark; Dinamarca
Fil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
description Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto-bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto-bench/mhci/join.
publishDate 2015
dc.date.none.fl_str_mv 2015-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/38180
Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason A.; Kim, Yohan; Sidney, John; et al.; Automated benchmarking of peptide-MHC class i binding predictions; Oxford University Press; Bioinformatics (Oxford, England); 31; 13; 7-2015; 2174-2181
1367-4803
CONICET Digital
CONICET
url http://hdl.handle.net/11336/38180
identifier_str_mv Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason A.; Kim, Yohan; Sidney, John; et al.; Automated benchmarking of peptide-MHC class i binding predictions; Oxford University Press; Bioinformatics (Oxford, England); 31; 13; 7-2015; 2174-2181
1367-4803
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/bioinformatics/btv123
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article/31/13/2174/196331
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981345183137792
score 12.493442