Evaluation of a heuristic search algorithm based on sampling and clustering
- Autores
- Harita, Maria; Wong, Alvaro; Rexachs del Rosario, Dolores; Luque Fadón, Emilio
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Systems have evolved in such a way that today’s parallel systems are capable of offering high capacity and better performance. The design of approaches seeking for the best set of parameters in the context of a high-performance execution is fundamental. Although complex, heuristic methods are strategies that deal with high-dimensional optimization problems. We are proposing to enhance the evaluation method of a baseline heuristic that uses sampling and clustering techniques to optimize a complex, large and dynamic system. To carry out our proposal we selected the benchmark test functions and perform a density-based analysis along with k-means to cluster into feasible regions, discarding the non-relevant areas. With this, we aim to avoid getting trapped in local minima. Ultimately, the recursive execution of our methodology will guarantee to obtain the best value, thus, getting closer to method validation without forgetting the future lines, e.g. its distributed parallel implementation. Preliminary results turned out to be satisfactory, having obtained a solution quality above 99%.
Facultad de Informática - Materia
-
Ciencias Informáticas
Optimization
Heuristic methods
Clustering
Benchmark - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/125155
Ver los metadatos del registro completo
id |
SEDICI_089de9be28a80fba784494af37e023c2 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/125155 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Evaluation of a heuristic search algorithm based on sampling and clusteringHarita, MariaWong, AlvaroRexachs del Rosario, DoloresLuque Fadón, EmilioCiencias InformáticasOptimizationHeuristic methodsClusteringBenchmarkSystems have evolved in such a way that today’s parallel systems are capable of offering high capacity and better performance. The design of approaches seeking for the best set of parameters in the context of a high-performance execution is fundamental. Although complex, heuristic methods are strategies that deal with high-dimensional optimization problems. We are proposing to enhance the evaluation method of a baseline heuristic that uses sampling and clustering techniques to optimize a complex, large and dynamic system. To carry out our proposal we selected the benchmark test functions and perform a density-based analysis along with k-means to cluster into feasible regions, discarding the non-relevant areas. With this, we aim to avoid getting trapped in local minima. Ultimately, the recursive execution of our methodology will guarantee to obtain the best value, thus, getting closer to method validation without forgetting the future lines, e.g. its distributed parallel implementation. Preliminary results turned out to be satisfactory, having obtained a solution quality above 99%.Facultad de Informática2021info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf55-59http://sedici.unlp.edu.ar/handle/10915/125155enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2016-4info:eu-repo/semantics/reference/hdl/10915/121564info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:13Zoai:sedici.unlp.edu.ar:10915/125155Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:13.918SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Evaluation of a heuristic search algorithm based on sampling and clustering |
title |
Evaluation of a heuristic search algorithm based on sampling and clustering |
spellingShingle |
Evaluation of a heuristic search algorithm based on sampling and clustering Harita, Maria Ciencias Informáticas Optimization Heuristic methods Clustering Benchmark |
title_short |
Evaluation of a heuristic search algorithm based on sampling and clustering |
title_full |
Evaluation of a heuristic search algorithm based on sampling and clustering |
title_fullStr |
Evaluation of a heuristic search algorithm based on sampling and clustering |
title_full_unstemmed |
Evaluation of a heuristic search algorithm based on sampling and clustering |
title_sort |
Evaluation of a heuristic search algorithm based on sampling and clustering |
dc.creator.none.fl_str_mv |
Harita, Maria Wong, Alvaro Rexachs del Rosario, Dolores Luque Fadón, Emilio |
author |
Harita, Maria |
author_facet |
Harita, Maria Wong, Alvaro Rexachs del Rosario, Dolores Luque Fadón, Emilio |
author_role |
author |
author2 |
Wong, Alvaro Rexachs del Rosario, Dolores Luque Fadón, Emilio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Optimization Heuristic methods Clustering Benchmark |
topic |
Ciencias Informáticas Optimization Heuristic methods Clustering Benchmark |
dc.description.none.fl_txt_mv |
Systems have evolved in such a way that today’s parallel systems are capable of offering high capacity and better performance. The design of approaches seeking for the best set of parameters in the context of a high-performance execution is fundamental. Although complex, heuristic methods are strategies that deal with high-dimensional optimization problems. We are proposing to enhance the evaluation method of a baseline heuristic that uses sampling and clustering techniques to optimize a complex, large and dynamic system. To carry out our proposal we selected the benchmark test functions and perform a density-based analysis along with k-means to cluster into feasible regions, discarding the non-relevant areas. With this, we aim to avoid getting trapped in local minima. Ultimately, the recursive execution of our methodology will guarantee to obtain the best value, thus, getting closer to method validation without forgetting the future lines, e.g. its distributed parallel implementation. Preliminary results turned out to be satisfactory, having obtained a solution quality above 99%. Facultad de Informática |
description |
Systems have evolved in such a way that today’s parallel systems are capable of offering high capacity and better performance. The design of approaches seeking for the best set of parameters in the context of a high-performance execution is fundamental. Although complex, heuristic methods are strategies that deal with high-dimensional optimization problems. We are proposing to enhance the evaluation method of a baseline heuristic that uses sampling and clustering techniques to optimize a complex, large and dynamic system. To carry out our proposal we selected the benchmark test functions and perform a density-based analysis along with k-means to cluster into feasible regions, discarding the non-relevant areas. With this, we aim to avoid getting trapped in local minima. Ultimately, the recursive execution of our methodology will guarantee to obtain the best value, thus, getting closer to method validation without forgetting the future lines, e.g. its distributed parallel implementation. Preliminary results turned out to be satisfactory, having obtained a solution quality above 99%. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/125155 |
url |
http://sedici.unlp.edu.ar/handle/10915/125155 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2016-4 info:eu-repo/semantics/reference/hdl/10915/121564 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 55-59 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260520256667648 |
score |
13.13397 |