Suppression of Related Independent Causes Using An Unsupervised Artificial Neural Network
- Autores
- Corchado, Emilio; Fyfe, Colin
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this paper, we study the problem of identification of underlying causes from a mixture of causes when these causes interfere with one another in a particular manner: the causes we consider are visual inputs to a neural network system which are created by independent underlying causes which may occlude each other. The prototypical problem in this area is a mixture of horizontal and vertical bars in which each horizontal bar interferes with the representation of each vertical bar and vice versa. We develop an unsupervised neural network which is able to identify a single orientation of bars from a mixture of horizontal and vertical bars.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
unsupervised neural network
underlying causes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/183167
Ver los metadatos del registro completo
id |
SEDICI_04e2d054871a0a6a6f7c92d7eb66a59f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/183167 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Suppression of Related Independent Causes Using An Unsupervised Artificial Neural NetworkCorchado, EmilioFyfe, ColinCiencias Informáticasunsupervised neural networkunderlying causesIn this paper, we study the problem of identification of underlying causes from a mixture of causes when these causes interfere with one another in a particular manner: the causes we consider are visual inputs to a neural network system which are created by independent underlying causes which may occlude each other. The prototypical problem in this area is a mixture of horizontal and vertical bars in which each horizontal bar interferes with the representation of each vertical bar and vice versa. We develop an unsupervised neural network which is able to identify a single orientation of bars from a mixture of horizontal and vertical bars.Sociedad Argentina de Informática e Investigación Operativa2002info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf130-141http://sedici.unlp.edu.ar/handle/10915/183167enginfo:eu-repo/semantics/altIdentifier/issn/1660-1079info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:21:45Zoai:sedici.unlp.edu.ar:10915/183167Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:21:45.785SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Suppression of Related Independent Causes Using An Unsupervised Artificial Neural Network |
title |
Suppression of Related Independent Causes Using An Unsupervised Artificial Neural Network |
spellingShingle |
Suppression of Related Independent Causes Using An Unsupervised Artificial Neural Network Corchado, Emilio Ciencias Informáticas unsupervised neural network underlying causes |
title_short |
Suppression of Related Independent Causes Using An Unsupervised Artificial Neural Network |
title_full |
Suppression of Related Independent Causes Using An Unsupervised Artificial Neural Network |
title_fullStr |
Suppression of Related Independent Causes Using An Unsupervised Artificial Neural Network |
title_full_unstemmed |
Suppression of Related Independent Causes Using An Unsupervised Artificial Neural Network |
title_sort |
Suppression of Related Independent Causes Using An Unsupervised Artificial Neural Network |
dc.creator.none.fl_str_mv |
Corchado, Emilio Fyfe, Colin |
author |
Corchado, Emilio |
author_facet |
Corchado, Emilio Fyfe, Colin |
author_role |
author |
author2 |
Fyfe, Colin |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas unsupervised neural network underlying causes |
topic |
Ciencias Informáticas unsupervised neural network underlying causes |
dc.description.none.fl_txt_mv |
In this paper, we study the problem of identification of underlying causes from a mixture of causes when these causes interfere with one another in a particular manner: the causes we consider are visual inputs to a neural network system which are created by independent underlying causes which may occlude each other. The prototypical problem in this area is a mixture of horizontal and vertical bars in which each horizontal bar interferes with the representation of each vertical bar and vice versa. We develop an unsupervised neural network which is able to identify a single orientation of bars from a mixture of horizontal and vertical bars. Sociedad Argentina de Informática e Investigación Operativa |
description |
In this paper, we study the problem of identification of underlying causes from a mixture of causes when these causes interfere with one another in a particular manner: the causes we consider are visual inputs to a neural network system which are created by independent underlying causes which may occlude each other. The prototypical problem in this area is a mixture of horizontal and vertical bars in which each horizontal bar interferes with the representation of each vertical bar and vice versa. We develop an unsupervised neural network which is able to identify a single orientation of bars from a mixture of horizontal and vertical bars. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/183167 |
url |
http://sedici.unlp.edu.ar/handle/10915/183167 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1660-1079 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 130-141 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260722302582784 |
score |
13.13397 |