Interpretable clustering using unsupervised binary trees
- Autores
- Fraiman, Ricardo; Ghattas, Badih; Svarc, Marcela
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We herein introduce a new method of interpretable clustering that uses unsupervised binary trees. It is a three-stage procedure, the first stage of which entails a series of recursive binary splits to reduce the heterogeneity of the data within the new subsamples. During the second stage (pruning), consideration is given to whether adjacent nodes can be aggregated. Finally, during the third stage (joining), similar clusters are joined together, even if they do not share the same parent originally. Consistency results are obtained, and the procedure is used on simulated and real data sets.
Fil: Fraiman, Ricardo. Universidad de San Andrés; Argentina. Universidad de la República; Uruguay
Fil: Ghattas, Badih. Université de la Méditerranée; Francia
Fil: Svarc, Marcela. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Unsupervised Classification
Cart
Pattern Recognition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/27180
Ver los metadatos del registro completo
id |
CONICETDig_5f55fce081cd6d89f503809a362ffe0b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/27180 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Interpretable clustering using unsupervised binary treesFraiman, RicardoGhattas, BadihSvarc, MarcelaUnsupervised ClassificationCartPattern Recognitionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We herein introduce a new method of interpretable clustering that uses unsupervised binary trees. It is a three-stage procedure, the first stage of which entails a series of recursive binary splits to reduce the heterogeneity of the data within the new subsamples. During the second stage (pruning), consideration is given to whether adjacent nodes can be aggregated. Finally, during the third stage (joining), similar clusters are joined together, even if they do not share the same parent originally. Consistency results are obtained, and the procedure is used on simulated and real data sets.Fil: Fraiman, Ricardo. Universidad de San Andrés; Argentina. Universidad de la República; UruguayFil: Ghattas, Badih. Université de la Méditerranée; FranciaFil: Svarc, Marcela. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/27180Fraiman, Ricardo; Ghattas, Badih; Svarc, Marcela; Interpretable clustering using unsupervised binary trees; Springer; Advances in Data Analysis and Classification; 7; 2; 3-2013; 125-1451862-53471862-5355CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11634-013-0129-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11634-013-0129-3info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1103.5339info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:37Zoai:ri.conicet.gov.ar:11336/27180instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:37.884CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Interpretable clustering using unsupervised binary trees |
title |
Interpretable clustering using unsupervised binary trees |
spellingShingle |
Interpretable clustering using unsupervised binary trees Fraiman, Ricardo Unsupervised Classification Cart Pattern Recognition |
title_short |
Interpretable clustering using unsupervised binary trees |
title_full |
Interpretable clustering using unsupervised binary trees |
title_fullStr |
Interpretable clustering using unsupervised binary trees |
title_full_unstemmed |
Interpretable clustering using unsupervised binary trees |
title_sort |
Interpretable clustering using unsupervised binary trees |
dc.creator.none.fl_str_mv |
Fraiman, Ricardo Ghattas, Badih Svarc, Marcela |
author |
Fraiman, Ricardo |
author_facet |
Fraiman, Ricardo Ghattas, Badih Svarc, Marcela |
author_role |
author |
author2 |
Ghattas, Badih Svarc, Marcela |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Unsupervised Classification Cart Pattern Recognition |
topic |
Unsupervised Classification Cart Pattern Recognition |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We herein introduce a new method of interpretable clustering that uses unsupervised binary trees. It is a three-stage procedure, the first stage of which entails a series of recursive binary splits to reduce the heterogeneity of the data within the new subsamples. During the second stage (pruning), consideration is given to whether adjacent nodes can be aggregated. Finally, during the third stage (joining), similar clusters are joined together, even if they do not share the same parent originally. Consistency results are obtained, and the procedure is used on simulated and real data sets. Fil: Fraiman, Ricardo. Universidad de San Andrés; Argentina. Universidad de la República; Uruguay Fil: Ghattas, Badih. Université de la Méditerranée; Francia Fil: Svarc, Marcela. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We herein introduce a new method of interpretable clustering that uses unsupervised binary trees. It is a three-stage procedure, the first stage of which entails a series of recursive binary splits to reduce the heterogeneity of the data within the new subsamples. During the second stage (pruning), consideration is given to whether adjacent nodes can be aggregated. Finally, during the third stage (joining), similar clusters are joined together, even if they do not share the same parent originally. Consistency results are obtained, and the procedure is used on simulated and real data sets. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/27180 Fraiman, Ricardo; Ghattas, Badih; Svarc, Marcela; Interpretable clustering using unsupervised binary trees; Springer; Advances in Data Analysis and Classification; 7; 2; 3-2013; 125-145 1862-5347 1862-5355 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/27180 |
identifier_str_mv |
Fraiman, Ricardo; Ghattas, Badih; Svarc, Marcela; Interpretable clustering using unsupervised binary trees; Springer; Advances in Data Analysis and Classification; 7; 2; 3-2013; 125-145 1862-5347 1862-5355 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11634-013-0129-3 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11634-013-0129-3 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1103.5339 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270165832564736 |
score |
13.13397 |