Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models
- Autores
- Álvarez, E.; Spannowsky, M.; Szewc, Manuel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The classification of jets induced by quarks or gluons is important for New Physics searches at high-energy colliders. However, available taggers usually rely on modeling the data through Monte Carlo simulations, which could veil intractable theoretical and systematical uncertainties. To significantly reduce biases, we propose an unsupervised learning algorithm that, given a sample of jets, can learn the SoftDrop Poissonian rates for quark- and gluon-initiated jets and their fractions. We extract the Maximum Likelihood Estimates for the mixture parameters and the posterior probability over them. We then construct a quark-gluon tagger and estimate its accuracy in actual data to be in the 0.65–0.7 range, below supervised algorithms but nevertheless competitive. We also show how relevant unsupervised metrics perform well, allowing for an unsupervised hyperparameter selection. Further, we find that this result is not affected by an angular smearing introduced to simulate detector effects for central jets. The presented unsupervised learning algorithm is simple; its result is interpretable and depends on very few assumptions.
Fil: Álvarez, E.. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina
Fil: Spannowsky, M.. University of Durham; Reino Unido
Fil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina - Materia
-
INFERENCE
JETS
LHC
QCD
UNSUPERVISE LEARNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/213499
Ver los metadatos del registro completo
id |
CONICETDig_55f8aaa29f4818b97d94a0ad4750b157 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/213499 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture ModelsÁlvarez, E.Spannowsky, M.Szewc, ManuelINFERENCEJETSLHCQCDUNSUPERVISE LEARNINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The classification of jets induced by quarks or gluons is important for New Physics searches at high-energy colliders. However, available taggers usually rely on modeling the data through Monte Carlo simulations, which could veil intractable theoretical and systematical uncertainties. To significantly reduce biases, we propose an unsupervised learning algorithm that, given a sample of jets, can learn the SoftDrop Poissonian rates for quark- and gluon-initiated jets and their fractions. We extract the Maximum Likelihood Estimates for the mixture parameters and the posterior probability over them. We then construct a quark-gluon tagger and estimate its accuracy in actual data to be in the 0.65–0.7 range, below supervised algorithms but nevertheless competitive. We also show how relevant unsupervised metrics perform well, allowing for an unsupervised hyperparameter selection. Further, we find that this result is not affected by an angular smearing introduced to simulate detector effects for central jets. The presented unsupervised learning algorithm is simple; its result is interpretable and depends on very few assumptions.Fil: Álvarez, E.. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; ArgentinaFil: Spannowsky, M.. University of Durham; Reino UnidoFil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; ArgentinaFrontiers Media2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213499Álvarez, E.; Spannowsky, M.; Szewc, Manuel; Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models; Frontiers Media; Frontiers in Artificial Intelligence; 5; 3-2022; 1-122624-8212CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/frai.2022.852970/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/frai.2022.852970info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:17Zoai:ri.conicet.gov.ar:11336/213499instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:17.527CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models |
title |
Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models |
spellingShingle |
Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models Álvarez, E. INFERENCE JETS LHC QCD UNSUPERVISE LEARNING |
title_short |
Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models |
title_full |
Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models |
title_fullStr |
Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models |
title_full_unstemmed |
Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models |
title_sort |
Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models |
dc.creator.none.fl_str_mv |
Álvarez, E. Spannowsky, M. Szewc, Manuel |
author |
Álvarez, E. |
author_facet |
Álvarez, E. Spannowsky, M. Szewc, Manuel |
author_role |
author |
author2 |
Spannowsky, M. Szewc, Manuel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
INFERENCE JETS LHC QCD UNSUPERVISE LEARNING |
topic |
INFERENCE JETS LHC QCD UNSUPERVISE LEARNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The classification of jets induced by quarks or gluons is important for New Physics searches at high-energy colliders. However, available taggers usually rely on modeling the data through Monte Carlo simulations, which could veil intractable theoretical and systematical uncertainties. To significantly reduce biases, we propose an unsupervised learning algorithm that, given a sample of jets, can learn the SoftDrop Poissonian rates for quark- and gluon-initiated jets and their fractions. We extract the Maximum Likelihood Estimates for the mixture parameters and the posterior probability over them. We then construct a quark-gluon tagger and estimate its accuracy in actual data to be in the 0.65–0.7 range, below supervised algorithms but nevertheless competitive. We also show how relevant unsupervised metrics perform well, allowing for an unsupervised hyperparameter selection. Further, we find that this result is not affected by an angular smearing introduced to simulate detector effects for central jets. The presented unsupervised learning algorithm is simple; its result is interpretable and depends on very few assumptions. Fil: Álvarez, E.. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina Fil: Spannowsky, M.. University of Durham; Reino Unido Fil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina |
description |
The classification of jets induced by quarks or gluons is important for New Physics searches at high-energy colliders. However, available taggers usually rely on modeling the data through Monte Carlo simulations, which could veil intractable theoretical and systematical uncertainties. To significantly reduce biases, we propose an unsupervised learning algorithm that, given a sample of jets, can learn the SoftDrop Poissonian rates for quark- and gluon-initiated jets and their fractions. We extract the Maximum Likelihood Estimates for the mixture parameters and the posterior probability over them. We then construct a quark-gluon tagger and estimate its accuracy in actual data to be in the 0.65–0.7 range, below supervised algorithms but nevertheless competitive. We also show how relevant unsupervised metrics perform well, allowing for an unsupervised hyperparameter selection. Further, we find that this result is not affected by an angular smearing introduced to simulate detector effects for central jets. The presented unsupervised learning algorithm is simple; its result is interpretable and depends on very few assumptions. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/213499 Álvarez, E.; Spannowsky, M.; Szewc, Manuel; Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models; Frontiers Media; Frontiers in Artificial Intelligence; 5; 3-2022; 1-12 2624-8212 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/213499 |
identifier_str_mv |
Álvarez, E.; Spannowsky, M.; Szewc, Manuel; Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models; Frontiers Media; Frontiers in Artificial Intelligence; 5; 3-2022; 1-12 2624-8212 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/frai.2022.852970/full info:eu-repo/semantics/altIdentifier/doi/10.3389/frai.2022.852970 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614443377360896 |
score |
13.070432 |