Clustering de un flujo de datos usando MapReduce

Autores
Basgall, María José; Hasperué, Waldo; Estrebou, César Armando; Naiouf, Marcelo
Año de publicación
2016
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Las técnicas de agrupamiento (clustering) sobre flujo de datos (data stream) son una poderosa herramienta para determinar las características que tienen en común los datos provenientes del flujo. Para obtener buenos resultados es necesario almacenar gran parte de éste en una ventana temporal. En este artículo medimos una técnica que maneja el tamaño de la ventana temporal de manera dinámica utilizando un algoritmo de clustering implementado en el framework MapReduce. Los resultados obtenidos demuestran que esta técnica alcanza una ventana de gran tamaño logrando así que cada dato del flujo se utilice en más de una iteración del algoritmo de clustering permitiendo conseguir resultados similares independientemente de la velocidad de los datos del flujo. Los centroides resultantes de cada flujo de datos son semejantes a los que se consiguen haciendo un clustering sobre el conjunto de datos completo.
XIII Workshop Bases de datos y Minería de Datos (WBDMD).
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
big data
stream processing
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/56748

id SEDICI_01f729ea61c1cfe3f9e2ddd080731798
oai_identifier_str oai:sedici.unlp.edu.ar:10915/56748
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Clustering de un flujo de datos usando MapReduceBasgall, María JoséHasperué, WaldoEstrebou, César ArmandoNaiouf, MarceloCiencias Informáticasbig datastream processingLas técnicas de agrupamiento (clustering) sobre flujo de datos (data stream) son una poderosa herramienta para determinar las características que tienen en común los datos provenientes del flujo. Para obtener buenos resultados es necesario almacenar gran parte de éste en una ventana temporal. En este artículo medimos una técnica que maneja el tamaño de la ventana temporal de manera dinámica utilizando un algoritmo de clustering implementado en el framework MapReduce. Los resultados obtenidos demuestran que esta técnica alcanza una ventana de gran tamaño logrando así que cada dato del flujo se utilice en más de una iteración del algoritmo de clustering permitiendo conseguir resultados similares independientemente de la velocidad de los datos del flujo. Los centroides resultantes de cada flujo de datos son semejantes a los que se consiguen haciendo un clustering sobre el conjunto de datos completo.XIII Workshop Bases de datos y Minería de Datos (WBDMD).Red de Universidades con Carreras en Informática (RedUNCI)2016-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf682-691http://sedici.unlp.edu.ar/handle/10915/56748spainfo:eu-repo/semantics/reference/hdl/10915/55718info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:47:35Zoai:sedici.unlp.edu.ar:10915/56748Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:47:35.559SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Clustering de un flujo de datos usando MapReduce
title Clustering de un flujo de datos usando MapReduce
spellingShingle Clustering de un flujo de datos usando MapReduce
Basgall, María José
Ciencias Informáticas
big data
stream processing
title_short Clustering de un flujo de datos usando MapReduce
title_full Clustering de un flujo de datos usando MapReduce
title_fullStr Clustering de un flujo de datos usando MapReduce
title_full_unstemmed Clustering de un flujo de datos usando MapReduce
title_sort Clustering de un flujo de datos usando MapReduce
dc.creator.none.fl_str_mv Basgall, María José
Hasperué, Waldo
Estrebou, César Armando
Naiouf, Marcelo
author Basgall, María José
author_facet Basgall, María José
Hasperué, Waldo
Estrebou, César Armando
Naiouf, Marcelo
author_role author
author2 Hasperué, Waldo
Estrebou, César Armando
Naiouf, Marcelo
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
big data
stream processing
topic Ciencias Informáticas
big data
stream processing
dc.description.none.fl_txt_mv Las técnicas de agrupamiento (clustering) sobre flujo de datos (data stream) son una poderosa herramienta para determinar las características que tienen en común los datos provenientes del flujo. Para obtener buenos resultados es necesario almacenar gran parte de éste en una ventana temporal. En este artículo medimos una técnica que maneja el tamaño de la ventana temporal de manera dinámica utilizando un algoritmo de clustering implementado en el framework MapReduce. Los resultados obtenidos demuestran que esta técnica alcanza una ventana de gran tamaño logrando así que cada dato del flujo se utilice en más de una iteración del algoritmo de clustering permitiendo conseguir resultados similares independientemente de la velocidad de los datos del flujo. Los centroides resultantes de cada flujo de datos son semejantes a los que se consiguen haciendo un clustering sobre el conjunto de datos completo.
XIII Workshop Bases de datos y Minería de Datos (WBDMD).
Red de Universidades con Carreras en Informática (RedUNCI)
description Las técnicas de agrupamiento (clustering) sobre flujo de datos (data stream) son una poderosa herramienta para determinar las características que tienen en común los datos provenientes del flujo. Para obtener buenos resultados es necesario almacenar gran parte de éste en una ventana temporal. En este artículo medimos una técnica que maneja el tamaño de la ventana temporal de manera dinámica utilizando un algoritmo de clustering implementado en el framework MapReduce. Los resultados obtenidos demuestran que esta técnica alcanza una ventana de gran tamaño logrando así que cada dato del flujo se utilice en más de una iteración del algoritmo de clustering permitiendo conseguir resultados similares independientemente de la velocidad de los datos del flujo. Los centroides resultantes de cada flujo de datos son semejantes a los que se consiguen haciendo un clustering sobre el conjunto de datos completo.
publishDate 2016
dc.date.none.fl_str_mv 2016-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/56748
url http://sedici.unlp.edu.ar/handle/10915/56748
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/reference/hdl/10915/55718
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
682-691
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783008631160832
score 12.982451