Data stream treatment using sliding windows with MapReduce
- Autores
- Basgall, María José; Hasperué, Waldo; Naiouf, Ricardo Marcelo
- Año de publicación
- 2016
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Knowledge Discovery in Databases (KDD) techniques present limitations when the volume of data to process is very large. Any KDD algorithm needs to do several iterations on the complete set of data in order to carry out its work. For continuous data stream processing it is necessary to store part of it in a temporal window.In this paper, we present a technique that uses the size of the temporal window in a dynamic way, based on the frequency of the data arrival and the response time of the KDD task. The obtained results show that this technique reaches a great size window where each example of the stream is used in more than one iteration of the KDD task.
Fil: Basgall, María José. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Hasperué, Waldo. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Naiouf, Ricardo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina - Materia
-
BIG DATA
MAPREDUCE
STREAM PROCESSING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/115823
Ver los metadatos del registro completo
id |
CONICETDig_2c433dcff85e1e05498e3fadb93e6dcb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/115823 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Data stream treatment using sliding windows with MapReduceBasgall, María JoséHasperué, WaldoNaiouf, Ricardo MarceloBIG DATAMAPREDUCESTREAM PROCESSINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Knowledge Discovery in Databases (KDD) techniques present limitations when the volume of data to process is very large. Any KDD algorithm needs to do several iterations on the complete set of data in order to carry out its work. For continuous data stream processing it is necessary to store part of it in a temporal window.In this paper, we present a technique that uses the size of the temporal window in a dynamic way, based on the frequency of the data arrival and the response time of the KDD task. The obtained results show that this technique reaches a great size window where each example of the stream is used in more than one iteration of the KDD task.Fil: Basgall, María José. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Hasperué, Waldo. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Naiouf, Ricardo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; ArgentinaUniversidad Nacional de La Plata. Facultad de Informática2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/115823Basgall, María José; Hasperué, Waldo; Naiouf, Ricardo Marcelo; Data stream treatment using sliding windows with MapReduce; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science and Technology; 16; 2; 11-2016; 76-831666-60461666-6038CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://sedici.unlp.edu.ar/handle/10915/57265info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:51Zoai:ri.conicet.gov.ar:11336/115823instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:51.779CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Data stream treatment using sliding windows with MapReduce |
title |
Data stream treatment using sliding windows with MapReduce |
spellingShingle |
Data stream treatment using sliding windows with MapReduce Basgall, María José BIG DATA MAPREDUCE STREAM PROCESSING |
title_short |
Data stream treatment using sliding windows with MapReduce |
title_full |
Data stream treatment using sliding windows with MapReduce |
title_fullStr |
Data stream treatment using sliding windows with MapReduce |
title_full_unstemmed |
Data stream treatment using sliding windows with MapReduce |
title_sort |
Data stream treatment using sliding windows with MapReduce |
dc.creator.none.fl_str_mv |
Basgall, María José Hasperué, Waldo Naiouf, Ricardo Marcelo |
author |
Basgall, María José |
author_facet |
Basgall, María José Hasperué, Waldo Naiouf, Ricardo Marcelo |
author_role |
author |
author2 |
Hasperué, Waldo Naiouf, Ricardo Marcelo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BIG DATA MAPREDUCE STREAM PROCESSING |
topic |
BIG DATA MAPREDUCE STREAM PROCESSING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Knowledge Discovery in Databases (KDD) techniques present limitations when the volume of data to process is very large. Any KDD algorithm needs to do several iterations on the complete set of data in order to carry out its work. For continuous data stream processing it is necessary to store part of it in a temporal window.In this paper, we present a technique that uses the size of the temporal window in a dynamic way, based on the frequency of the data arrival and the response time of the KDD task. The obtained results show that this technique reaches a great size window where each example of the stream is used in more than one iteration of the KDD task. Fil: Basgall, María José. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Hasperué, Waldo. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Naiouf, Ricardo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina |
description |
Knowledge Discovery in Databases (KDD) techniques present limitations when the volume of data to process is very large. Any KDD algorithm needs to do several iterations on the complete set of data in order to carry out its work. For continuous data stream processing it is necessary to store part of it in a temporal window.In this paper, we present a technique that uses the size of the temporal window in a dynamic way, based on the frequency of the data arrival and the response time of the KDD task. The obtained results show that this technique reaches a great size window where each example of the stream is used in more than one iteration of the KDD task. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/115823 Basgall, María José; Hasperué, Waldo; Naiouf, Ricardo Marcelo; Data stream treatment using sliding windows with MapReduce; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science and Technology; 16; 2; 11-2016; 76-83 1666-6046 1666-6038 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/115823 |
identifier_str_mv |
Basgall, María José; Hasperué, Waldo; Naiouf, Ricardo Marcelo; Data stream treatment using sliding windows with MapReduce; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science and Technology; 16; 2; 11-2016; 76-83 1666-6046 1666-6038 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://sedici.unlp.edu.ar/handle/10915/57265 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Informática |
publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Informática |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980165342199808 |
score |
12.993085 |