Data stream treatment using sliding windows with MapReduce
- Autores
- Basgall, María José; Hasperué, Waldo; Naiouf, Marcelo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Knowledge Discovery in Databases (KDD) techniques present limitations when the volume of data to process is very large. Any KDD algorithm needs to do several iterations on the complete set of data in order to carry out its work. For continuous data stream processing it is necessary to store part of it in a temporal window. In this paper, we present a technique that uses the size of the temporal window in a dynamic way, based on the frequency of the data arrival and the response time of the KDD task. The obtained results show that this technique reaches a great size window where each example of the stream is used in more than one iteration of the KDD task.
Facultad de Informática - Materia
-
Ciencias Informáticas
big data
mapreduce
stream processing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/57265
Ver los metadatos del registro completo
id |
SEDICI_ac02bd5f902bbf83bb3454838a5d794a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/57265 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Data stream treatment using sliding windows with MapReduceBasgall, María JoséHasperué, WaldoNaiouf, MarceloCiencias Informáticasbig datamapreducestream processingKnowledge Discovery in Databases (KDD) techniques present limitations when the volume of data to process is very large. Any KDD algorithm needs to do several iterations on the complete set of data in order to carry out its work. For continuous data stream processing it is necessary to store part of it in a temporal window. In this paper, we present a technique that uses the size of the temporal window in a dynamic way, based on the frequency of the data arrival and the response time of the KDD task. The obtained results show that this technique reaches a great size window where each example of the stream is used in more than one iteration of the KDD task.Facultad de Informática2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf76-83http://sedici.unlp.edu.ar/handle/10915/57265enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/2016/12/JCST-43-Paper-2.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:38:56Zoai:sedici.unlp.edu.ar:10915/57265Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:38:56.598SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Data stream treatment using sliding windows with MapReduce |
title |
Data stream treatment using sliding windows with MapReduce |
spellingShingle |
Data stream treatment using sliding windows with MapReduce Basgall, María José Ciencias Informáticas big data mapreduce stream processing |
title_short |
Data stream treatment using sliding windows with MapReduce |
title_full |
Data stream treatment using sliding windows with MapReduce |
title_fullStr |
Data stream treatment using sliding windows with MapReduce |
title_full_unstemmed |
Data stream treatment using sliding windows with MapReduce |
title_sort |
Data stream treatment using sliding windows with MapReduce |
dc.creator.none.fl_str_mv |
Basgall, María José Hasperué, Waldo Naiouf, Marcelo |
author |
Basgall, María José |
author_facet |
Basgall, María José Hasperué, Waldo Naiouf, Marcelo |
author_role |
author |
author2 |
Hasperué, Waldo Naiouf, Marcelo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas big data mapreduce stream processing |
topic |
Ciencias Informáticas big data mapreduce stream processing |
dc.description.none.fl_txt_mv |
Knowledge Discovery in Databases (KDD) techniques present limitations when the volume of data to process is very large. Any KDD algorithm needs to do several iterations on the complete set of data in order to carry out its work. For continuous data stream processing it is necessary to store part of it in a temporal window. In this paper, we present a technique that uses the size of the temporal window in a dynamic way, based on the frequency of the data arrival and the response time of the KDD task. The obtained results show that this technique reaches a great size window where each example of the stream is used in more than one iteration of the KDD task. Facultad de Informática |
description |
Knowledge Discovery in Databases (KDD) techniques present limitations when the volume of data to process is very large. Any KDD algorithm needs to do several iterations on the complete set of data in order to carry out its work. For continuous data stream processing it is necessary to store part of it in a temporal window. In this paper, we present a technique that uses the size of the temporal window in a dynamic way, based on the frequency of the data arrival and the response time of the KDD task. The obtained results show that this technique reaches a great size window where each example of the stream is used in more than one iteration of the KDD task. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/57265 |
url |
http://sedici.unlp.edu.ar/handle/10915/57265 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/2016/12/JCST-43-Paper-2.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
dc.format.none.fl_str_mv |
application/pdf 76-83 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260249887637504 |
score |
13.13397 |