Bases de datos de series temporales y métodos estadísticos para la predicción de rendimientos de ETH

Autores
Hernández, Alejo
Año de publicación
2023
Idioma
español castellano
Tipo de recurso
tesis de maestría
Estado
versión aceptada
Colaborador/a o director/a de tesis
Fernández Bariviera, Aurelio
Di Pasquale, Ricardo
Descripción
Las bases de datos forman parte de nuestra vida diaria, aunque muchos de nosotros probablemente no seamos conscientes de este hecho. Esto es fácil de entender si tenemos en cuenta que la mayoría de las transacciones electrónicas nos ponen en contacto con una de ellas y que este tipo de transacciones se han vuelto ubicuas, dado el nivel de penetración que poseen los teléfonos celulares y el crecimiento exponencial que han experimentado los dispositivos conectados a internet (IoT, IoE). Este uso intensivo de las bases de datos, combinado con la vastedad de escenarios en los cuales se ven involucradas, ha propiciado un proceso evolutivo que comenzó en la década del ’60 y continua hasta nuestros días. En este camino, varios tipos de bases de datos fueron creadas: relacionales, no-SQL, de almacenamiento en memoria, de grafos, geoespaciales y por último, las especıficas para series temporales (BDSTs). Por otra parte, durante los últimos diez años la adopción de las criptomonedas como instrumento de inversión y/o de especulación fomentó el desarrollo de un mercado de negociación deslocalizado, de muy alta frecuencia y sin interrupciones significativas que, al día de hoy, se presenta como una alternativa viable para el manejo de divisas y el pago de bienes y servicios. Si bien en términos académicos, la mayoría de los trabajos publicados utilizan datos con frecuencias diarias, esta tendencia está cambiando, puesto que los investigadores han visto la importancia de extraer información de datos en más alta frecuencia para capturar el comportamiento de este mercado altamente dinámico. Estas características particulares que presenta el mercado de criptomonedas se traducen en un flujo de datos continuo y de alta frecuencia, modulado mayoritariamente por operaciones de trading automatizadas. Esto evidencia la necesidad de contar, por un lado, con un sistema de almacenamiento y procesamiento de datos acorde con el volumen y velocidad de generación involucrados y por otro, con una serie de algoritmos robustos que permitan predecir los retornos de los activos de forma precisa y confiable. A fin de explorar más en profundidad estos aspectos, este trabajo se propone implementar un pipeline de datos soportado por una BDST a fin de realizar predicciones de rendimento de activos usando métodos estadísticos. Más concretamente, se implementa la BDST InfluxDB para predecir los retornos de Ethereum (ETH), la segunda criptomoneda en términos de capitalización de mercado. Desde el punto de vista del manejo de datos, se decidió trabajar con la BDST InfluxDB puesto que la misma cuenta con una suite de herramientas muy completa para gestionar los procesos de captura, almacenamiento, consulta y visualización de la información. Por otra parte, en lo relativo al modelado estadístico de los datos, se utilizó el paquete Statsmodels de Python que permite realizar la predicción de los retornos aplicando un modelo ARMA con intervalos de confianza corregidos mediante un modelo GARCH.
Especialista en Inteligencia de Datos orientada a Big Data
Universidad Nacional de La Plata
Facultad de Informática
Materia
Ciencias Informáticas
Inteligencia de Datos
Bases de datos
rendimientos de ETH
Series temporales
métodos estadísticos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/161491

id SEDICI_019476e599b1a4bbc27f9fd8a4b212b0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/161491
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Bases de datos de series temporales y métodos estadísticos para la predicción de rendimientos de ETHHernández, AlejoCiencias InformáticasInteligencia de DatosBases de datosrendimientos de ETHSeries temporalesmétodos estadísticosLas bases de datos forman parte de nuestra vida diaria, aunque muchos de nosotros probablemente no seamos conscientes de este hecho. Esto es fácil de entender si tenemos en cuenta que la mayoría de las transacciones electrónicas nos ponen en contacto con una de ellas y que este tipo de transacciones se han vuelto ubicuas, dado el nivel de penetración que poseen los teléfonos celulares y el crecimiento exponencial que han experimentado los dispositivos conectados a internet (IoT, IoE). Este uso intensivo de las bases de datos, combinado con la vastedad de escenarios en los cuales se ven involucradas, ha propiciado un proceso evolutivo que comenzó en la década del ’60 y continua hasta nuestros días. En este camino, varios tipos de bases de datos fueron creadas: relacionales, no-SQL, de almacenamiento en memoria, de grafos, geoespaciales y por último, las especıficas para series temporales (BDSTs). Por otra parte, durante los últimos diez años la adopción de las criptomonedas como instrumento de inversión y/o de especulación fomentó el desarrollo de un mercado de negociación deslocalizado, de muy alta frecuencia y sin interrupciones significativas que, al día de hoy, se presenta como una alternativa viable para el manejo de divisas y el pago de bienes y servicios. Si bien en términos académicos, la mayoría de los trabajos publicados utilizan datos con frecuencias diarias, esta tendencia está cambiando, puesto que los investigadores han visto la importancia de extraer información de datos en más alta frecuencia para capturar el comportamiento de este mercado altamente dinámico. Estas características particulares que presenta el mercado de criptomonedas se traducen en un flujo de datos continuo y de alta frecuencia, modulado mayoritariamente por operaciones de trading automatizadas. Esto evidencia la necesidad de contar, por un lado, con un sistema de almacenamiento y procesamiento de datos acorde con el volumen y velocidad de generación involucrados y por otro, con una serie de algoritmos robustos que permitan predecir los retornos de los activos de forma precisa y confiable. A fin de explorar más en profundidad estos aspectos, este trabajo se propone implementar un pipeline de datos soportado por una BDST a fin de realizar predicciones de rendimento de activos usando métodos estadísticos. Más concretamente, se implementa la BDST InfluxDB para predecir los retornos de Ethereum (ETH), la segunda criptomoneda en términos de capitalización de mercado. Desde el punto de vista del manejo de datos, se decidió trabajar con la BDST InfluxDB puesto que la misma cuenta con una suite de herramientas muy completa para gestionar los procesos de captura, almacenamiento, consulta y visualización de la información. Por otra parte, en lo relativo al modelado estadístico de los datos, se utilizó el paquete Statsmodels de Python que permite realizar la predicción de los retornos aplicando un modelo ARMA con intervalos de confianza corregidos mediante un modelo GARCH.Especialista en Inteligencia de Datos orientada a Big DataUniversidad Nacional de La PlataFacultad de InformáticaFernández Bariviera, AurelioDi Pasquale, Ricardo2023-02-16info:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTrabajo de especializacionhttp://purl.org/coar/resource_type/c_bdccinfo:ar-repo/semantics/tesisDeMaestriaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/161491spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-12-23T11:44:26Zoai:sedici.unlp.edu.ar:10915/161491Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-12-23 11:44:26.942SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Bases de datos de series temporales y métodos estadísticos para la predicción de rendimientos de ETH
title Bases de datos de series temporales y métodos estadísticos para la predicción de rendimientos de ETH
spellingShingle Bases de datos de series temporales y métodos estadísticos para la predicción de rendimientos de ETH
Hernández, Alejo
Ciencias Informáticas
Inteligencia de Datos
Bases de datos
rendimientos de ETH
Series temporales
métodos estadísticos
title_short Bases de datos de series temporales y métodos estadísticos para la predicción de rendimientos de ETH
title_full Bases de datos de series temporales y métodos estadísticos para la predicción de rendimientos de ETH
title_fullStr Bases de datos de series temporales y métodos estadísticos para la predicción de rendimientos de ETH
title_full_unstemmed Bases de datos de series temporales y métodos estadísticos para la predicción de rendimientos de ETH
title_sort Bases de datos de series temporales y métodos estadísticos para la predicción de rendimientos de ETH
dc.creator.none.fl_str_mv Hernández, Alejo
author Hernández, Alejo
author_facet Hernández, Alejo
author_role author
dc.contributor.none.fl_str_mv Fernández Bariviera, Aurelio
Di Pasquale, Ricardo
dc.subject.none.fl_str_mv Ciencias Informáticas
Inteligencia de Datos
Bases de datos
rendimientos de ETH
Series temporales
métodos estadísticos
topic Ciencias Informáticas
Inteligencia de Datos
Bases de datos
rendimientos de ETH
Series temporales
métodos estadísticos
dc.description.none.fl_txt_mv Las bases de datos forman parte de nuestra vida diaria, aunque muchos de nosotros probablemente no seamos conscientes de este hecho. Esto es fácil de entender si tenemos en cuenta que la mayoría de las transacciones electrónicas nos ponen en contacto con una de ellas y que este tipo de transacciones se han vuelto ubicuas, dado el nivel de penetración que poseen los teléfonos celulares y el crecimiento exponencial que han experimentado los dispositivos conectados a internet (IoT, IoE). Este uso intensivo de las bases de datos, combinado con la vastedad de escenarios en los cuales se ven involucradas, ha propiciado un proceso evolutivo que comenzó en la década del ’60 y continua hasta nuestros días. En este camino, varios tipos de bases de datos fueron creadas: relacionales, no-SQL, de almacenamiento en memoria, de grafos, geoespaciales y por último, las especıficas para series temporales (BDSTs). Por otra parte, durante los últimos diez años la adopción de las criptomonedas como instrumento de inversión y/o de especulación fomentó el desarrollo de un mercado de negociación deslocalizado, de muy alta frecuencia y sin interrupciones significativas que, al día de hoy, se presenta como una alternativa viable para el manejo de divisas y el pago de bienes y servicios. Si bien en términos académicos, la mayoría de los trabajos publicados utilizan datos con frecuencias diarias, esta tendencia está cambiando, puesto que los investigadores han visto la importancia de extraer información de datos en más alta frecuencia para capturar el comportamiento de este mercado altamente dinámico. Estas características particulares que presenta el mercado de criptomonedas se traducen en un flujo de datos continuo y de alta frecuencia, modulado mayoritariamente por operaciones de trading automatizadas. Esto evidencia la necesidad de contar, por un lado, con un sistema de almacenamiento y procesamiento de datos acorde con el volumen y velocidad de generación involucrados y por otro, con una serie de algoritmos robustos que permitan predecir los retornos de los activos de forma precisa y confiable. A fin de explorar más en profundidad estos aspectos, este trabajo se propone implementar un pipeline de datos soportado por una BDST a fin de realizar predicciones de rendimento de activos usando métodos estadísticos. Más concretamente, se implementa la BDST InfluxDB para predecir los retornos de Ethereum (ETH), la segunda criptomoneda en términos de capitalización de mercado. Desde el punto de vista del manejo de datos, se decidió trabajar con la BDST InfluxDB puesto que la misma cuenta con una suite de herramientas muy completa para gestionar los procesos de captura, almacenamiento, consulta y visualización de la información. Por otra parte, en lo relativo al modelado estadístico de los datos, se utilizó el paquete Statsmodels de Python que permite realizar la predicción de los retornos aplicando un modelo ARMA con intervalos de confianza corregidos mediante un modelo GARCH.
Especialista en Inteligencia de Datos orientada a Big Data
Universidad Nacional de La Plata
Facultad de Informática
description Las bases de datos forman parte de nuestra vida diaria, aunque muchos de nosotros probablemente no seamos conscientes de este hecho. Esto es fácil de entender si tenemos en cuenta que la mayoría de las transacciones electrónicas nos ponen en contacto con una de ellas y que este tipo de transacciones se han vuelto ubicuas, dado el nivel de penetración que poseen los teléfonos celulares y el crecimiento exponencial que han experimentado los dispositivos conectados a internet (IoT, IoE). Este uso intensivo de las bases de datos, combinado con la vastedad de escenarios en los cuales se ven involucradas, ha propiciado un proceso evolutivo que comenzó en la década del ’60 y continua hasta nuestros días. En este camino, varios tipos de bases de datos fueron creadas: relacionales, no-SQL, de almacenamiento en memoria, de grafos, geoespaciales y por último, las especıficas para series temporales (BDSTs). Por otra parte, durante los últimos diez años la adopción de las criptomonedas como instrumento de inversión y/o de especulación fomentó el desarrollo de un mercado de negociación deslocalizado, de muy alta frecuencia y sin interrupciones significativas que, al día de hoy, se presenta como una alternativa viable para el manejo de divisas y el pago de bienes y servicios. Si bien en términos académicos, la mayoría de los trabajos publicados utilizan datos con frecuencias diarias, esta tendencia está cambiando, puesto que los investigadores han visto la importancia de extraer información de datos en más alta frecuencia para capturar el comportamiento de este mercado altamente dinámico. Estas características particulares que presenta el mercado de criptomonedas se traducen en un flujo de datos continuo y de alta frecuencia, modulado mayoritariamente por operaciones de trading automatizadas. Esto evidencia la necesidad de contar, por un lado, con un sistema de almacenamiento y procesamiento de datos acorde con el volumen y velocidad de generación involucrados y por otro, con una serie de algoritmos robustos que permitan predecir los retornos de los activos de forma precisa y confiable. A fin de explorar más en profundidad estos aspectos, este trabajo se propone implementar un pipeline de datos soportado por una BDST a fin de realizar predicciones de rendimento de activos usando métodos estadísticos. Más concretamente, se implementa la BDST InfluxDB para predecir los retornos de Ethereum (ETH), la segunda criptomoneda en términos de capitalización de mercado. Desde el punto de vista del manejo de datos, se decidió trabajar con la BDST InfluxDB puesto que la misma cuenta con una suite de herramientas muy completa para gestionar los procesos de captura, almacenamiento, consulta y visualización de la información. Por otra parte, en lo relativo al modelado estadístico de los datos, se utilizó el paquete Statsmodels de Python que permite realizar la predicción de los retornos aplicando un modelo ARMA con intervalos de confianza corregidos mediante un modelo GARCH.
publishDate 2023
dc.date.none.fl_str_mv 2023-02-16
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
info:eu-repo/semantics/acceptedVersion
Trabajo de especializacion
http://purl.org/coar/resource_type/c_bdcc
info:ar-repo/semantics/tesisDeMaestria
format masterThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/161491
url http://sedici.unlp.edu.ar/handle/10915/161491
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1852334670821195776
score 12.952241