Shorting selfadjoint operators in Hilbert spaces

Autores
Giribet, Juan Ignacio; Maestripieri, Alejandra Laura; Martínez Pería, Francisco Dardo
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a closed subspace S of a Hilbert space H and a (bounded) selfadjoint operator B acting on H, a min-max representation of the shorted operator (or Schur complement) of B to S is obtained under compatibility hypotheses. Also, an extension of Pekarev's formula is given.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Matemática
Schur complement
Selfadjoint operator
Shorted operator
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84288

id SEDICI_00b43a8e1e2b86d4bff07238497c98f4
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84288
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Shorting selfadjoint operators in Hilbert spacesGiribet, Juan IgnacioMaestripieri, Alejandra LauraMartínez Pería, Francisco DardoCiencias ExactasMatemáticaSchur complementSelfadjoint operatorShorted operatorGiven a closed subspace S of a Hilbert space H and a (bounded) selfadjoint operator B acting on H, a min-max representation of the shorted operator (or Schur complement) of B to S is obtained under compatibility hypotheses. Also, an extension of Pekarev's formula is given.Facultad de Ciencias Exactas2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1899-1911http://sedici.unlp.edu.ar/handle/10915/84288enginfo:eu-repo/semantics/altIdentifier/issn/0024-3795info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2007.10.034info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:14Zoai:sedici.unlp.edu.ar:10915/84288Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:15.167SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Shorting selfadjoint operators in Hilbert spaces
title Shorting selfadjoint operators in Hilbert spaces
spellingShingle Shorting selfadjoint operators in Hilbert spaces
Giribet, Juan Ignacio
Ciencias Exactas
Matemática
Schur complement
Selfadjoint operator
Shorted operator
title_short Shorting selfadjoint operators in Hilbert spaces
title_full Shorting selfadjoint operators in Hilbert spaces
title_fullStr Shorting selfadjoint operators in Hilbert spaces
title_full_unstemmed Shorting selfadjoint operators in Hilbert spaces
title_sort Shorting selfadjoint operators in Hilbert spaces
dc.creator.none.fl_str_mv Giribet, Juan Ignacio
Maestripieri, Alejandra Laura
Martínez Pería, Francisco Dardo
author Giribet, Juan Ignacio
author_facet Giribet, Juan Ignacio
Maestripieri, Alejandra Laura
Martínez Pería, Francisco Dardo
author_role author
author2 Maestripieri, Alejandra Laura
Martínez Pería, Francisco Dardo
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Matemática
Schur complement
Selfadjoint operator
Shorted operator
topic Ciencias Exactas
Matemática
Schur complement
Selfadjoint operator
Shorted operator
dc.description.none.fl_txt_mv Given a closed subspace S of a Hilbert space H and a (bounded) selfadjoint operator B acting on H, a min-max representation of the shorted operator (or Schur complement) of B to S is obtained under compatibility hypotheses. Also, an extension of Pekarev's formula is given.
Facultad de Ciencias Exactas
description Given a closed subspace S of a Hilbert space H and a (bounded) selfadjoint operator B acting on H, a min-max representation of the shorted operator (or Schur complement) of B to S is obtained under compatibility hypotheses. Also, an extension of Pekarev's formula is given.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84288
url http://sedici.unlp.edu.ar/handle/10915/84288
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0024-3795
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2007.10.034
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1899-1911
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616034784378880
score 13.070432