Bases estructurales del reconocimiento ARN-proteína en el procesamiento de pequeños ARNs en plantas

Autores
Burdisso, Paula
Año de publicación
2014
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Rasia, Rodolfo M.
Descripción
Los microARNs (miARNs) son moléculas de ARN pequeñas de 21 nucleótidos de longitud que se sintetizan en el núcleo por la ARN polimerasa II. En plantas, están involucrados en la regulación de procesos como el desarrollo, resistencia a estrés y respuestas a hormonas. La biogénesis de miARNs comienza con la transcripción de precursores mas largos, con extensa estructura secundaria de tallo y burbuja dentro de los cuales está contenida la secuencia que corresponde al mensaje de 21 nucleótidos. Estos precursores son procesados por un complejo proteico formado por la ARNasa III DICER-LIKE 1 (DCL1) y las proteínas accesorias HYPONASTIC LEAVES 1 (HYL1) y SERRATE (SE). Los precursores de plantas son sumamente heterogéneos. Sin embargo, la maquinaria de procesamiento, es capaz de liberar con precisión el miARN que posteriormente efectuará su acción regulando negativamente ARN mensajeros por complementariedad de bases de Watson y Crick. Durante los últimos años, se han dedicado muchos esfuerzos en descubrir nuevos miARNs, así como también se han logrado numerosos avances respecto a las formas de procesamiento de los precursores de plantas. Sin embargo, el mecanismo por el cual las proteínas de procesamiento llevan a cabo el reconocimiento es hasta el momento poco conocido. En este trabajo realizamos una caracterización biofísica de los dominios de unión a ARN doble hebra. En primer lugar se calculó la estructura en solución del segundo dsRBD de DCL1, a partir de la cual se observó que si bien tiene un plegamiento de dsRBD canónico, presenta diferencias con respecto a dominios homólogos. También se demostró que este dominio es capaz de unir tanto ARNdh como ADN, en contraste con lo que ocurre con la mayoría de los dsRBDs. La caracterización funcional de este dominio demostró que posiblemente actúe como una señal de localización atípica para direccionar a DCL1 al núcleo. Por otro lado, se analizaron los distintos determinantes de unión a sustrato del primer dsRBD de la proteína accesoria HYL1. Para esto, se generaron formas mutantes de la proteína, las cuales mantienen su estructura global, pero afectan las propiedades de unión al sustrato. Sorprendentemente, se demostró que una mutación y hasta una deleción completa en la región que se propone como principal determinante de unión al ARN no causa mayores efectos. Finalmente, se analizó la función de cada mutante in vivo, estableciendo una correlación directa entre la afinidad por los precursores y la actividad de la proteína.
Fil: Fil: Burdisso, Paula. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.
Materia
mi-ARN
dsRBD
DICER
HYL1
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Atribución – No Comercial (by-nc): Se permite la generación de obras derivadas siempre que no se haga con fines comerciales. Tampoco se puede utilizar la obra original con fines comerciales https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
RepHipUNR (UNR)
Institución
Universidad Nacional de Rosario
OAI Identificador
oai:rephip.unr.edu.ar:2133/11035

id RepHipUNR_c260894c8860c03b5bb6eb84e1203fa9
oai_identifier_str oai:rephip.unr.edu.ar:2133/11035
network_acronym_str RepHipUNR
repository_id_str 1550
network_name_str RepHipUNR (UNR)
spelling Bases estructurales del reconocimiento ARN-proteína en el procesamiento de pequeños ARNs en plantasBurdisso, Paulami-ARNdsRBDDICERHYL1Los microARNs (miARNs) son moléculas de ARN pequeñas de 21 nucleótidos de longitud que se sintetizan en el núcleo por la ARN polimerasa II. En plantas, están involucrados en la regulación de procesos como el desarrollo, resistencia a estrés y respuestas a hormonas. La biogénesis de miARNs comienza con la transcripción de precursores mas largos, con extensa estructura secundaria de tallo y burbuja dentro de los cuales está contenida la secuencia que corresponde al mensaje de 21 nucleótidos. Estos precursores son procesados por un complejo proteico formado por la ARNasa III DICER-LIKE 1 (DCL1) y las proteínas accesorias HYPONASTIC LEAVES 1 (HYL1) y SERRATE (SE). Los precursores de plantas son sumamente heterogéneos. Sin embargo, la maquinaria de procesamiento, es capaz de liberar con precisión el miARN que posteriormente efectuará su acción regulando negativamente ARN mensajeros por complementariedad de bases de Watson y Crick. Durante los últimos años, se han dedicado muchos esfuerzos en descubrir nuevos miARNs, así como también se han logrado numerosos avances respecto a las formas de procesamiento de los precursores de plantas. Sin embargo, el mecanismo por el cual las proteínas de procesamiento llevan a cabo el reconocimiento es hasta el momento poco conocido. En este trabajo realizamos una caracterización biofísica de los dominios de unión a ARN doble hebra. En primer lugar se calculó la estructura en solución del segundo dsRBD de DCL1, a partir de la cual se observó que si bien tiene un plegamiento de dsRBD canónico, presenta diferencias con respecto a dominios homólogos. También se demostró que este dominio es capaz de unir tanto ARNdh como ADN, en contraste con lo que ocurre con la mayoría de los dsRBDs. La caracterización funcional de este dominio demostró que posiblemente actúe como una señal de localización atípica para direccionar a DCL1 al núcleo. Por otro lado, se analizaron los distintos determinantes de unión a sustrato del primer dsRBD de la proteína accesoria HYL1. Para esto, se generaron formas mutantes de la proteína, las cuales mantienen su estructura global, pero afectan las propiedades de unión al sustrato. Sorprendentemente, se demostró que una mutación y hasta una deleción completa en la región que se propone como principal determinante de unión al ARN no causa mayores efectos. Finalmente, se analizó la función de cada mutante in vivo, estableciendo una correlación directa entre la afinidad por los precursores y la actividad de la proteína.Fil: Fil: Burdisso, Paula. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y FarmacéuticasRasia, Rodolfo M.2014-03-06info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://hdl.handle.net/2133/11035spainfo:eu-repo/semantics/openAccessAtribución – No Comercial (by-nc): Se permite la generación de obras derivadas siempre que no se haga con fines comerciales. Tampoco se puede utilizar la obra original con fines comerciales https://creativecommons.org/licenses/by-nc/2.5/ar/http://creativecommons.org/licenses/by-nc/2.5/ar/Licencia RepHipreponame:RepHipUNR (UNR)instname:Universidad Nacional de Rosario2025-09-04T09:43:41Zoai:rephip.unr.edu.ar:2133/11035instacron:UNRInstitucionalhttps://rephip.unr.edu.ar/Universidad públicaNo correspondehttps://rephip.unr.edu.ar/oai/requestrephip@unr.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:15502025-09-04 09:43:41.504RepHipUNR (UNR) - Universidad Nacional de Rosariofalse
dc.title.none.fl_str_mv Bases estructurales del reconocimiento ARN-proteína en el procesamiento de pequeños ARNs en plantas
title Bases estructurales del reconocimiento ARN-proteína en el procesamiento de pequeños ARNs en plantas
spellingShingle Bases estructurales del reconocimiento ARN-proteína en el procesamiento de pequeños ARNs en plantas
Burdisso, Paula
mi-ARN
dsRBD
DICER
HYL1
title_short Bases estructurales del reconocimiento ARN-proteína en el procesamiento de pequeños ARNs en plantas
title_full Bases estructurales del reconocimiento ARN-proteína en el procesamiento de pequeños ARNs en plantas
title_fullStr Bases estructurales del reconocimiento ARN-proteína en el procesamiento de pequeños ARNs en plantas
title_full_unstemmed Bases estructurales del reconocimiento ARN-proteína en el procesamiento de pequeños ARNs en plantas
title_sort Bases estructurales del reconocimiento ARN-proteína en el procesamiento de pequeños ARNs en plantas
dc.creator.none.fl_str_mv Burdisso, Paula
author Burdisso, Paula
author_facet Burdisso, Paula
author_role author
dc.contributor.none.fl_str_mv Rasia, Rodolfo M.
dc.subject.none.fl_str_mv mi-ARN
dsRBD
DICER
HYL1
topic mi-ARN
dsRBD
DICER
HYL1
dc.description.none.fl_txt_mv Los microARNs (miARNs) son moléculas de ARN pequeñas de 21 nucleótidos de longitud que se sintetizan en el núcleo por la ARN polimerasa II. En plantas, están involucrados en la regulación de procesos como el desarrollo, resistencia a estrés y respuestas a hormonas. La biogénesis de miARNs comienza con la transcripción de precursores mas largos, con extensa estructura secundaria de tallo y burbuja dentro de los cuales está contenida la secuencia que corresponde al mensaje de 21 nucleótidos. Estos precursores son procesados por un complejo proteico formado por la ARNasa III DICER-LIKE 1 (DCL1) y las proteínas accesorias HYPONASTIC LEAVES 1 (HYL1) y SERRATE (SE). Los precursores de plantas son sumamente heterogéneos. Sin embargo, la maquinaria de procesamiento, es capaz de liberar con precisión el miARN que posteriormente efectuará su acción regulando negativamente ARN mensajeros por complementariedad de bases de Watson y Crick. Durante los últimos años, se han dedicado muchos esfuerzos en descubrir nuevos miARNs, así como también se han logrado numerosos avances respecto a las formas de procesamiento de los precursores de plantas. Sin embargo, el mecanismo por el cual las proteínas de procesamiento llevan a cabo el reconocimiento es hasta el momento poco conocido. En este trabajo realizamos una caracterización biofísica de los dominios de unión a ARN doble hebra. En primer lugar se calculó la estructura en solución del segundo dsRBD de DCL1, a partir de la cual se observó que si bien tiene un plegamiento de dsRBD canónico, presenta diferencias con respecto a dominios homólogos. También se demostró que este dominio es capaz de unir tanto ARNdh como ADN, en contraste con lo que ocurre con la mayoría de los dsRBDs. La caracterización funcional de este dominio demostró que posiblemente actúe como una señal de localización atípica para direccionar a DCL1 al núcleo. Por otro lado, se analizaron los distintos determinantes de unión a sustrato del primer dsRBD de la proteína accesoria HYL1. Para esto, se generaron formas mutantes de la proteína, las cuales mantienen su estructura global, pero afectan las propiedades de unión al sustrato. Sorprendentemente, se demostró que una mutación y hasta una deleción completa en la región que se propone como principal determinante de unión al ARN no causa mayores efectos. Finalmente, se analizó la función de cada mutante in vivo, estableciendo una correlación directa entre la afinidad por los precursores y la actividad de la proteína.
Fil: Fil: Burdisso, Paula. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.
description Los microARNs (miARNs) son moléculas de ARN pequeñas de 21 nucleótidos de longitud que se sintetizan en el núcleo por la ARN polimerasa II. En plantas, están involucrados en la regulación de procesos como el desarrollo, resistencia a estrés y respuestas a hormonas. La biogénesis de miARNs comienza con la transcripción de precursores mas largos, con extensa estructura secundaria de tallo y burbuja dentro de los cuales está contenida la secuencia que corresponde al mensaje de 21 nucleótidos. Estos precursores son procesados por un complejo proteico formado por la ARNasa III DICER-LIKE 1 (DCL1) y las proteínas accesorias HYPONASTIC LEAVES 1 (HYL1) y SERRATE (SE). Los precursores de plantas son sumamente heterogéneos. Sin embargo, la maquinaria de procesamiento, es capaz de liberar con precisión el miARN que posteriormente efectuará su acción regulando negativamente ARN mensajeros por complementariedad de bases de Watson y Crick. Durante los últimos años, se han dedicado muchos esfuerzos en descubrir nuevos miARNs, así como también se han logrado numerosos avances respecto a las formas de procesamiento de los precursores de plantas. Sin embargo, el mecanismo por el cual las proteínas de procesamiento llevan a cabo el reconocimiento es hasta el momento poco conocido. En este trabajo realizamos una caracterización biofísica de los dominios de unión a ARN doble hebra. En primer lugar se calculó la estructura en solución del segundo dsRBD de DCL1, a partir de la cual se observó que si bien tiene un plegamiento de dsRBD canónico, presenta diferencias con respecto a dominios homólogos. También se demostró que este dominio es capaz de unir tanto ARNdh como ADN, en contraste con lo que ocurre con la mayoría de los dsRBDs. La caracterización funcional de este dominio demostró que posiblemente actúe como una señal de localización atípica para direccionar a DCL1 al núcleo. Por otro lado, se analizaron los distintos determinantes de unión a sustrato del primer dsRBD de la proteína accesoria HYL1. Para esto, se generaron formas mutantes de la proteína, las cuales mantienen su estructura global, pero afectan las propiedades de unión al sustrato. Sorprendentemente, se demostró que una mutación y hasta una deleción completa en la región que se propone como principal determinante de unión al ARN no causa mayores efectos. Finalmente, se analizó la función de cada mutante in vivo, estableciendo una correlación directa entre la afinidad por los precursores y la actividad de la proteína.
publishDate 2014
dc.date.none.fl_str_mv 2014-03-06
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/2133/11035
url http://hdl.handle.net/2133/11035
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
Atribución – No Comercial (by-nc): Se permite la generación de obras derivadas siempre que no se haga con fines comerciales. Tampoco se puede utilizar la obra original con fines comerciales https://creativecommons.org/licenses/by-nc/2.5/ar/
http://creativecommons.org/licenses/by-nc/2.5/ar/
Licencia RepHip
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución – No Comercial (by-nc): Se permite la generación de obras derivadas siempre que no se haga con fines comerciales. Tampoco se puede utilizar la obra original con fines comerciales https://creativecommons.org/licenses/by-nc/2.5/ar/
http://creativecommons.org/licenses/by-nc/2.5/ar/
Licencia RepHip
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas
publisher.none.fl_str_mv Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas
dc.source.none.fl_str_mv reponame:RepHipUNR (UNR)
instname:Universidad Nacional de Rosario
reponame_str RepHipUNR (UNR)
collection RepHipUNR (UNR)
instname_str Universidad Nacional de Rosario
repository.name.fl_str_mv RepHipUNR (UNR) - Universidad Nacional de Rosario
repository.mail.fl_str_mv rephip@unr.edu.ar
_version_ 1842340741433524224
score 12.623145