Formalization of the Domination Chain with Weighted Parameters

Autores
Severín, Daniel Esteban
Año de publicación
2019
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The Cockayne-Hedetniemi Domination Chain is a chain of inequalities between classic parameters of graph theory: for a given graph G, ir(G) ≤ γ(G) ≤ ι(G) ≤ α(G) ≤ Γ(G) ≤ IR(G). These parameters return the maximum/minimum cardinality of a set satisfying some property. However, they can be generalized for graphs with weighted vertices where the objective is to maximize/minimize the sum of weights of a set satisfying the same property, and the domination chain still holds for them. In this work, the definition of these parameters as well as the chain is formalized in Coq/Ssreflect.
Fil: Fil: Severín, Daniel. Universidad Nacional de Rosario. FCEIA. CONICET. Rosario; Argentina
Materia
Mathematics of computing
Graph theory
Domination Chain
Coq
Formalization of Mathematics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/3.0/
Repositorio
RepHipUNR (UNR)
Institución
Universidad Nacional de Rosario
OAI Identificador
oai:rephip.unr.edu.ar:2133/18978

id RepHipUNR_24443d586eeb01e9e47e8e9282260b94
oai_identifier_str oai:rephip.unr.edu.ar:2133/18978
network_acronym_str RepHipUNR
repository_id_str 1550
network_name_str RepHipUNR (UNR)
spelling Formalization of the Domination Chain with Weighted ParametersSeverín, Daniel EstebanMathematics of computingGraph theoryhttps://purl.org/becyt/ford/1.1Domination ChainCoqFormalization of MathematicsThe Cockayne-Hedetniemi Domination Chain is a chain of inequalities between classic parameters of graph theory: for a given graph G, ir(G) ≤ γ(G) ≤ ι(G) ≤ α(G) ≤ Γ(G) ≤ IR(G). These parameters return the maximum/minimum cardinality of a set satisfying some property. However, they can be generalized for graphs with weighted vertices where the objective is to maximize/minimize the sum of weights of a set satisfying the same property, and the domination chain still holds for them. In this work, the definition of these parameters as well as the chain is formalized in Coq/Ssreflect.Fil: Fil: Severín, Daniel. Universidad Nacional de Rosario. FCEIA. CONICET. Rosario; ArgentinaLIPIcs – Leibniz International Proceedings in Informatics2019info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/2133/18978urn:issn: 1868-8969urn:isbn: 978-3-95977-122-1enghttp://hdl.handle.net/2133/18977https://doi.org/10.4230/LIPIcs.ITP.2019.36info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/3.0/Licencia RepHipreponame:RepHipUNR (UNR)instname:Universidad Nacional de Rosario2025-09-04T09:44:19Zoai:rephip.unr.edu.ar:2133/18978instacron:UNRInstitucionalhttps://rephip.unr.edu.ar/Universidad públicaNo correspondehttps://rephip.unr.edu.ar/oai/requestrephip@unr.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:15502025-09-04 09:44:19.281RepHipUNR (UNR) - Universidad Nacional de Rosariofalse
dc.title.none.fl_str_mv Formalization of the Domination Chain with Weighted Parameters
title Formalization of the Domination Chain with Weighted Parameters
spellingShingle Formalization of the Domination Chain with Weighted Parameters
Severín, Daniel Esteban
Mathematics of computing
Graph theory
Domination Chain
Coq
Formalization of Mathematics
title_short Formalization of the Domination Chain with Weighted Parameters
title_full Formalization of the Domination Chain with Weighted Parameters
title_fullStr Formalization of the Domination Chain with Weighted Parameters
title_full_unstemmed Formalization of the Domination Chain with Weighted Parameters
title_sort Formalization of the Domination Chain with Weighted Parameters
dc.creator.none.fl_str_mv Severín, Daniel Esteban
author Severín, Daniel Esteban
author_facet Severín, Daniel Esteban
author_role author
dc.contributor.none.fl_str_mv LIPIcs – Leibniz International Proceedings in Informatics
dc.subject.none.fl_str_mv Mathematics of computing
Graph theory
Domination Chain
Coq
Formalization of Mathematics
topic Mathematics of computing
Graph theory
Domination Chain
Coq
Formalization of Mathematics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
dc.description.none.fl_txt_mv The Cockayne-Hedetniemi Domination Chain is a chain of inequalities between classic parameters of graph theory: for a given graph G, ir(G) ≤ γ(G) ≤ ι(G) ≤ α(G) ≤ Γ(G) ≤ IR(G). These parameters return the maximum/minimum cardinality of a set satisfying some property. However, they can be generalized for graphs with weighted vertices where the objective is to maximize/minimize the sum of weights of a set satisfying the same property, and the domination chain still holds for them. In this work, the definition of these parameters as well as the chain is formalized in Coq/Ssreflect.
Fil: Fil: Severín, Daniel. Universidad Nacional de Rosario. FCEIA. CONICET. Rosario; Argentina
description The Cockayne-Hedetniemi Domination Chain is a chain of inequalities between classic parameters of graph theory: for a given graph G, ir(G) ≤ γ(G) ≤ ι(G) ≤ α(G) ≤ Γ(G) ≤ IR(G). These parameters return the maximum/minimum cardinality of a set satisfying some property. However, they can be generalized for graphs with weighted vertices where the objective is to maximize/minimize the sum of weights of a set satisfying the same property, and the domination chain still holds for them. In this work, the definition of these parameters as well as the chain is formalized in Coq/Ssreflect.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject


info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/2133/18978
urn:issn: 1868-8969
urn:isbn: 978-3-95977-122-1
url http://hdl.handle.net/2133/18978
identifier_str_mv urn:issn: 1868-8969
urn:isbn: 978-3-95977-122-1
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://hdl.handle.net/2133/18977
https://doi.org/10.4230/LIPIcs.ITP.2019.36
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/3.0/
Licencia RepHip
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/3.0/
Licencia RepHip
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:RepHipUNR (UNR)
instname:Universidad Nacional de Rosario
reponame_str RepHipUNR (UNR)
collection RepHipUNR (UNR)
instname_str Universidad Nacional de Rosario
repository.name.fl_str_mv RepHipUNR (UNR) - Universidad Nacional de Rosario
repository.mail.fl_str_mv rephip@unr.edu.ar
_version_ 1842340749239123969
score 12.623145