Formalization of the Domination Chain with Weighted Parameters
- Autores
- Severín, Daniel Esteban
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The Cockayne-Hedetniemi Domination Chain is a chain of inequalities between classic parameters of graph theory: for a given graph G, ir(G) ≤ γ(G) ≤ ι(G) ≤ α(G) ≤ Γ(G) ≤ IR(G). These parameters return the maximum/minimum cardinality of a set satisfying some property. However, they can be generalized for graphs with weighted vertices where the objective is to maximize/minimize the sum of weights of a set satisfying the same property, and the domination chain still holds for them. In this work, the definition of these parameters as well as the chain is formalized in Coq/Ssreflect.
Fil: Fil: Severín, Daniel. Universidad Nacional de Rosario. FCEIA. CONICET. Rosario; Argentina - Materia
-
Mathematics of computing
Graph theory
Domination Chain
Coq
Formalization of Mathematics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/3.0/
- Repositorio
- Institución
- Universidad Nacional de Rosario
- OAI Identificador
- oai:rephip.unr.edu.ar:2133/18978
Ver los metadatos del registro completo
id |
RepHipUNR_24443d586eeb01e9e47e8e9282260b94 |
---|---|
oai_identifier_str |
oai:rephip.unr.edu.ar:2133/18978 |
network_acronym_str |
RepHipUNR |
repository_id_str |
1550 |
network_name_str |
RepHipUNR (UNR) |
spelling |
Formalization of the Domination Chain with Weighted ParametersSeverín, Daniel EstebanMathematics of computingGraph theoryhttps://purl.org/becyt/ford/1.1Domination ChainCoqFormalization of MathematicsThe Cockayne-Hedetniemi Domination Chain is a chain of inequalities between classic parameters of graph theory: for a given graph G, ir(G) ≤ γ(G) ≤ ι(G) ≤ α(G) ≤ Γ(G) ≤ IR(G). These parameters return the maximum/minimum cardinality of a set satisfying some property. However, they can be generalized for graphs with weighted vertices where the objective is to maximize/minimize the sum of weights of a set satisfying the same property, and the domination chain still holds for them. In this work, the definition of these parameters as well as the chain is formalized in Coq/Ssreflect.Fil: Fil: Severín, Daniel. Universidad Nacional de Rosario. FCEIA. CONICET. Rosario; ArgentinaLIPIcs – Leibniz International Proceedings in Informatics2019info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/2133/18978urn:issn: 1868-8969urn:isbn: 978-3-95977-122-1enghttp://hdl.handle.net/2133/18977https://doi.org/10.4230/LIPIcs.ITP.2019.36info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/3.0/Licencia RepHipreponame:RepHipUNR (UNR)instname:Universidad Nacional de Rosario2025-09-04T09:44:19Zoai:rephip.unr.edu.ar:2133/18978instacron:UNRInstitucionalhttps://rephip.unr.edu.ar/Universidad públicaNo correspondehttps://rephip.unr.edu.ar/oai/requestrephip@unr.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:15502025-09-04 09:44:19.281RepHipUNR (UNR) - Universidad Nacional de Rosariofalse |
dc.title.none.fl_str_mv |
Formalization of the Domination Chain with Weighted Parameters |
title |
Formalization of the Domination Chain with Weighted Parameters |
spellingShingle |
Formalization of the Domination Chain with Weighted Parameters Severín, Daniel Esteban Mathematics of computing Graph theory Domination Chain Coq Formalization of Mathematics |
title_short |
Formalization of the Domination Chain with Weighted Parameters |
title_full |
Formalization of the Domination Chain with Weighted Parameters |
title_fullStr |
Formalization of the Domination Chain with Weighted Parameters |
title_full_unstemmed |
Formalization of the Domination Chain with Weighted Parameters |
title_sort |
Formalization of the Domination Chain with Weighted Parameters |
dc.creator.none.fl_str_mv |
Severín, Daniel Esteban |
author |
Severín, Daniel Esteban |
author_facet |
Severín, Daniel Esteban |
author_role |
author |
dc.contributor.none.fl_str_mv |
LIPIcs – Leibniz International Proceedings in Informatics |
dc.subject.none.fl_str_mv |
Mathematics of computing Graph theory Domination Chain Coq Formalization of Mathematics |
topic |
Mathematics of computing Graph theory Domination Chain Coq Formalization of Mathematics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 |
dc.description.none.fl_txt_mv |
The Cockayne-Hedetniemi Domination Chain is a chain of inequalities between classic parameters of graph theory: for a given graph G, ir(G) ≤ γ(G) ≤ ι(G) ≤ α(G) ≤ Γ(G) ≤ IR(G). These parameters return the maximum/minimum cardinality of a set satisfying some property. However, they can be generalized for graphs with weighted vertices where the objective is to maximize/minimize the sum of weights of a set satisfying the same property, and the domination chain still holds for them. In this work, the definition of these parameters as well as the chain is formalized in Coq/Ssreflect. Fil: Fil: Severín, Daniel. Universidad Nacional de Rosario. FCEIA. CONICET. Rosario; Argentina |
description |
The Cockayne-Hedetniemi Domination Chain is a chain of inequalities between classic parameters of graph theory: for a given graph G, ir(G) ≤ γ(G) ≤ ι(G) ≤ α(G) ≤ Γ(G) ≤ IR(G). These parameters return the maximum/minimum cardinality of a set satisfying some property. However, they can be generalized for graphs with weighted vertices where the objective is to maximize/minimize the sum of weights of a set satisfying the same property, and the domination chain still holds for them. In this work, the definition of these parameters as well as the chain is formalized in Coq/Ssreflect. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/2133/18978 urn:issn: 1868-8969 urn:isbn: 978-3-95977-122-1 |
url |
http://hdl.handle.net/2133/18978 |
identifier_str_mv |
urn:issn: 1868-8969 urn:isbn: 978-3-95977-122-1 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://hdl.handle.net/2133/18977 https://doi.org/10.4230/LIPIcs.ITP.2019.36 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/3.0/ Licencia RepHip |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/3.0/ Licencia RepHip |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:RepHipUNR (UNR) instname:Universidad Nacional de Rosario |
reponame_str |
RepHipUNR (UNR) |
collection |
RepHipUNR (UNR) |
instname_str |
Universidad Nacional de Rosario |
repository.name.fl_str_mv |
RepHipUNR (UNR) - Universidad Nacional de Rosario |
repository.mail.fl_str_mv |
rephip@unr.edu.ar |
_version_ |
1842340749239123969 |
score |
12.623145 |