A generalization of the kinetic equation using the prabhakar-type operators

Autores
Dorrego, Gustavo Abel; Kumar, Dinesh
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have pro- vided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at present- ing solutions of certain general families of fractional kinetic equa- tions using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al.
Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina.
Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina.
Fil: Kumar, Dinesh. University Jai Narain Vyas. Department of Mathematics & Statistics; India.
Fuente
Honam Mathematical Journal, 2017, vol. 39, no. 3, p. 401-416.
Materia
Fractional differential equation
Generalized fractional integral operators
Laplace transform
Sumudu transform
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
Institución
Universidad Nacional del Nordeste
OAI Identificador
oai:repositorio.unne.edu.ar:123456789/9106

id RIUNNE_ef4a7853ed32fade9c8c5ae668e4614c
oai_identifier_str oai:repositorio.unne.edu.ar:123456789/9106
network_acronym_str RIUNNE
repository_id_str 4871
network_name_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
spelling A generalization of the kinetic equation using the prabhakar-type operatorsDorrego, Gustavo AbelKumar, DineshFractional differential equationGeneralized fractional integral operatorsLaplace transformSumudu transformFractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have pro- vided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at present- ing solutions of certain general families of fractional kinetic equa- tions using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al.Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina.Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina.Fil: Kumar, Dinesh. University Jai Narain Vyas. Department of Mathematics & Statistics; India.Honam Mathematical Society2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfp. 401-416application/pdfDorrego, Gustavo Abel y Kumar, Dinesh, 2017. A generalization of the kinetic equation using the prabhakar-type operators. Honam Mathematical Journal. Corea del Sur, Daedeok: Korea Science, vol. 39, no. 3, p. 401-416. ISSN 2288-6176.2288-6176http://repositorio.unne.edu.ar/handle/123456789/9106Honam Mathematical Journal, 2017, vol. 39, no. 3, p. 401-416.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordesteenghttps://doi.org/10.5831/HMJ.2017.39.3.401info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-09-29T14:30:04Zoai:repositorio.unne.edu.ar:123456789/9106instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-09-29 14:30:05.285Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse
dc.title.none.fl_str_mv A generalization of the kinetic equation using the prabhakar-type operators
title A generalization of the kinetic equation using the prabhakar-type operators
spellingShingle A generalization of the kinetic equation using the prabhakar-type operators
Dorrego, Gustavo Abel
Fractional differential equation
Generalized fractional integral operators
Laplace transform
Sumudu transform
title_short A generalization of the kinetic equation using the prabhakar-type operators
title_full A generalization of the kinetic equation using the prabhakar-type operators
title_fullStr A generalization of the kinetic equation using the prabhakar-type operators
title_full_unstemmed A generalization of the kinetic equation using the prabhakar-type operators
title_sort A generalization of the kinetic equation using the prabhakar-type operators
dc.creator.none.fl_str_mv Dorrego, Gustavo Abel
Kumar, Dinesh
author Dorrego, Gustavo Abel
author_facet Dorrego, Gustavo Abel
Kumar, Dinesh
author_role author
author2 Kumar, Dinesh
author2_role author
dc.subject.none.fl_str_mv Fractional differential equation
Generalized fractional integral operators
Laplace transform
Sumudu transform
topic Fractional differential equation
Generalized fractional integral operators
Laplace transform
Sumudu transform
dc.description.none.fl_txt_mv Fractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have pro- vided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at present- ing solutions of certain general families of fractional kinetic equa- tions using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al.
Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina.
Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina.
Fil: Kumar, Dinesh. University Jai Narain Vyas. Department of Mathematics & Statistics; India.
description Fractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have pro- vided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at present- ing solutions of certain general families of fractional kinetic equa- tions using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Dorrego, Gustavo Abel y Kumar, Dinesh, 2017. A generalization of the kinetic equation using the prabhakar-type operators. Honam Mathematical Journal. Corea del Sur, Daedeok: Korea Science, vol. 39, no. 3, p. 401-416. ISSN 2288-6176.
2288-6176
http://repositorio.unne.edu.ar/handle/123456789/9106
identifier_str_mv Dorrego, Gustavo Abel y Kumar, Dinesh, 2017. A generalization of the kinetic equation using the prabhakar-type operators. Honam Mathematical Journal. Corea del Sur, Daedeok: Korea Science, vol. 39, no. 3, p. 401-416. ISSN 2288-6176.
2288-6176
url http://repositorio.unne.edu.ar/handle/123456789/9106
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://doi.org/10.5831/HMJ.2017.39.3.401
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
dc.format.none.fl_str_mv application/pdf
p. 401-416
application/pdf
dc.publisher.none.fl_str_mv Honam Mathematical Society
publisher.none.fl_str_mv Honam Mathematical Society
dc.source.none.fl_str_mv Honam Mathematical Journal, 2017, vol. 39, no. 3, p. 401-416.
reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname:Universidad Nacional del Nordeste
reponame_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
collection Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname_str Universidad Nacional del Nordeste
repository.name.fl_str_mv Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste
repository.mail.fl_str_mv ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar
_version_ 1844621681543348224
score 12.559606