A generalization of the kinetic equation using the prabhakar-type operators
- Autores
- Dorrego, Gustavo Abel; Kumar, Dinesh
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have pro- vided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at present- ing solutions of certain general families of fractional kinetic equa- tions using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al.
Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina.
Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina.
Fil: Kumar, Dinesh. University Jai Narain Vyas. Department of Mathematics & Statistics; India. - Fuente
- Honam Mathematical Journal, 2017, vol. 39, no. 3, p. 401-416.
- Materia
-
Fractional differential equation
Generalized fractional integral operators
Laplace transform
Sumudu transform - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional del Nordeste
- OAI Identificador
- oai:repositorio.unne.edu.ar:123456789/9106
Ver los metadatos del registro completo
id |
RIUNNE_ef4a7853ed32fade9c8c5ae668e4614c |
---|---|
oai_identifier_str |
oai:repositorio.unne.edu.ar:123456789/9106 |
network_acronym_str |
RIUNNE |
repository_id_str |
4871 |
network_name_str |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
spelling |
A generalization of the kinetic equation using the prabhakar-type operatorsDorrego, Gustavo AbelKumar, DineshFractional differential equationGeneralized fractional integral operatorsLaplace transformSumudu transformFractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have pro- vided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at present- ing solutions of certain general families of fractional kinetic equa- tions using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al.Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina.Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina.Fil: Kumar, Dinesh. University Jai Narain Vyas. Department of Mathematics & Statistics; India.Honam Mathematical Society2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfp. 401-416application/pdfDorrego, Gustavo Abel y Kumar, Dinesh, 2017. A generalization of the kinetic equation using the prabhakar-type operators. Honam Mathematical Journal. Corea del Sur, Daedeok: Korea Science, vol. 39, no. 3, p. 401-416. ISSN 2288-6176.2288-6176http://repositorio.unne.edu.ar/handle/123456789/9106Honam Mathematical Journal, 2017, vol. 39, no. 3, p. 401-416.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordesteenghttps://doi.org/10.5831/HMJ.2017.39.3.401info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-09-29T14:30:04Zoai:repositorio.unne.edu.ar:123456789/9106instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-09-29 14:30:05.285Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse |
dc.title.none.fl_str_mv |
A generalization of the kinetic equation using the prabhakar-type operators |
title |
A generalization of the kinetic equation using the prabhakar-type operators |
spellingShingle |
A generalization of the kinetic equation using the prabhakar-type operators Dorrego, Gustavo Abel Fractional differential equation Generalized fractional integral operators Laplace transform Sumudu transform |
title_short |
A generalization of the kinetic equation using the prabhakar-type operators |
title_full |
A generalization of the kinetic equation using the prabhakar-type operators |
title_fullStr |
A generalization of the kinetic equation using the prabhakar-type operators |
title_full_unstemmed |
A generalization of the kinetic equation using the prabhakar-type operators |
title_sort |
A generalization of the kinetic equation using the prabhakar-type operators |
dc.creator.none.fl_str_mv |
Dorrego, Gustavo Abel Kumar, Dinesh |
author |
Dorrego, Gustavo Abel |
author_facet |
Dorrego, Gustavo Abel Kumar, Dinesh |
author_role |
author |
author2 |
Kumar, Dinesh |
author2_role |
author |
dc.subject.none.fl_str_mv |
Fractional differential equation Generalized fractional integral operators Laplace transform Sumudu transform |
topic |
Fractional differential equation Generalized fractional integral operators Laplace transform Sumudu transform |
dc.description.none.fl_txt_mv |
Fractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have pro- vided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at present- ing solutions of certain general families of fractional kinetic equa- tions using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al. Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Fil: Kumar, Dinesh. University Jai Narain Vyas. Department of Mathematics & Statistics; India. |
description |
Fractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have pro- vided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at present- ing solutions of certain general families of fractional kinetic equa- tions using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Dorrego, Gustavo Abel y Kumar, Dinesh, 2017. A generalization of the kinetic equation using the prabhakar-type operators. Honam Mathematical Journal. Corea del Sur, Daedeok: Korea Science, vol. 39, no. 3, p. 401-416. ISSN 2288-6176. 2288-6176 http://repositorio.unne.edu.ar/handle/123456789/9106 |
identifier_str_mv |
Dorrego, Gustavo Abel y Kumar, Dinesh, 2017. A generalization of the kinetic equation using the prabhakar-type operators. Honam Mathematical Journal. Corea del Sur, Daedeok: Korea Science, vol. 39, no. 3, p. 401-416. ISSN 2288-6176. 2288-6176 |
url |
http://repositorio.unne.edu.ar/handle/123456789/9106 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://doi.org/10.5831/HMJ.2017.39.3.401 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Atribución-NoComercial-SinDerivadas 2.5 Argentina |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Atribución-NoComercial-SinDerivadas 2.5 Argentina |
dc.format.none.fl_str_mv |
application/pdf p. 401-416 application/pdf |
dc.publisher.none.fl_str_mv |
Honam Mathematical Society |
publisher.none.fl_str_mv |
Honam Mathematical Society |
dc.source.none.fl_str_mv |
Honam Mathematical Journal, 2017, vol. 39, no. 3, p. 401-416. reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) instname:Universidad Nacional del Nordeste |
reponame_str |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
collection |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
instname_str |
Universidad Nacional del Nordeste |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste |
repository.mail.fl_str_mv |
ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar |
_version_ |
1844621681543348224 |
score |
12.559606 |