The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation

Autores
Dorrego, Gustavo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study an n-dimensional generalization of time-fractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox's H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated.
Fil: Dorrego, Gustavo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Caputo Fractional Derivative
Fox'S H-Function
Fractional Differential Equation
Hilfer Fractional Derivative
Integrals Transforms
Mittag&Ndash;Leffler-Type Function
Riemann&Ndash;Liouville Fractional Derivative
Ultra-Hyperbolic Operator
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/39132

id CONICETDig_6e46403b0590171666e88875719f573d
oai_identifier_str oai:ri.conicet.gov.ar:11336/39132
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equationDorrego, GustavoCaputo Fractional DerivativeFox'S H-FunctionFractional Differential EquationHilfer Fractional DerivativeIntegrals TransformsMittag&Ndash;Leffler-Type FunctionRiemann&Ndash;Liouville Fractional DerivativeUltra-Hyperbolic Operatorhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study an n-dimensional generalization of time-fractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox's H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated.Fil: Dorrego, Gustavo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTaylor & Francis Ltd2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/39132Dorrego, Gustavo; The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation; Taylor & Francis Ltd; Integral Transforms And Special Functions; 27; 5; 5-2016; 392-4041065-24691476-8291CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/10652469.2016.1144185info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/10652469.2016.1144185info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:29Zoai:ri.conicet.gov.ar:11336/39132instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:30.156CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation
title The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation
spellingShingle The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation
Dorrego, Gustavo
Caputo Fractional Derivative
Fox'S H-Function
Fractional Differential Equation
Hilfer Fractional Derivative
Integrals Transforms
Mittag&Ndash;Leffler-Type Function
Riemann&Ndash;Liouville Fractional Derivative
Ultra-Hyperbolic Operator
title_short The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation
title_full The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation
title_fullStr The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation
title_full_unstemmed The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation
title_sort The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation
dc.creator.none.fl_str_mv Dorrego, Gustavo
author Dorrego, Gustavo
author_facet Dorrego, Gustavo
author_role author
dc.subject.none.fl_str_mv Caputo Fractional Derivative
Fox'S H-Function
Fractional Differential Equation
Hilfer Fractional Derivative
Integrals Transforms
Mittag&Ndash;Leffler-Type Function
Riemann&Ndash;Liouville Fractional Derivative
Ultra-Hyperbolic Operator
topic Caputo Fractional Derivative
Fox'S H-Function
Fractional Differential Equation
Hilfer Fractional Derivative
Integrals Transforms
Mittag&Ndash;Leffler-Type Function
Riemann&Ndash;Liouville Fractional Derivative
Ultra-Hyperbolic Operator
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we study an n-dimensional generalization of time-fractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox's H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated.
Fil: Dorrego, Gustavo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this paper we study an n-dimensional generalization of time-fractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox's H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/39132
Dorrego, Gustavo; The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation; Taylor & Francis Ltd; Integral Transforms And Special Functions; 27; 5; 5-2016; 392-404
1065-2469
1476-8291
CONICET Digital
CONICET
url http://hdl.handle.net/11336/39132
identifier_str_mv Dorrego, Gustavo; The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation; Taylor & Francis Ltd; Integral Transforms And Special Functions; 27; 5; 5-2016; 392-404
1065-2469
1476-8291
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1080/10652469.2016.1144185
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/10652469.2016.1144185
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis Ltd
publisher.none.fl_str_mv Taylor & Francis Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082625339392000
score 13.22299