The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation
- Autores
- Dorrego, Gustavo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study an n-dimensional generalization of time-fractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox's H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated.
Fil: Dorrego, Gustavo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Caputo Fractional Derivative
Fox'S H-Function
Fractional Differential Equation
Hilfer Fractional Derivative
Integrals Transforms
Mittag&Ndash;Leffler-Type Function
Riemann&Ndash;Liouville Fractional Derivative
Ultra-Hyperbolic Operator - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/39132
Ver los metadatos del registro completo
id |
CONICETDig_6e46403b0590171666e88875719f573d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/39132 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equationDorrego, GustavoCaputo Fractional DerivativeFox'S H-FunctionFractional Differential EquationHilfer Fractional DerivativeIntegrals TransformsMittag&Ndash;Leffler-Type FunctionRiemann&Ndash;Liouville Fractional DerivativeUltra-Hyperbolic Operatorhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study an n-dimensional generalization of time-fractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox's H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated.Fil: Dorrego, Gustavo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTaylor & Francis Ltd2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/39132Dorrego, Gustavo; The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation; Taylor & Francis Ltd; Integral Transforms And Special Functions; 27; 5; 5-2016; 392-4041065-24691476-8291CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/10652469.2016.1144185info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/10652469.2016.1144185info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:29Zoai:ri.conicet.gov.ar:11336/39132instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:30.156CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation |
title |
The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation |
spellingShingle |
The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation Dorrego, Gustavo Caputo Fractional Derivative Fox'S H-Function Fractional Differential Equation Hilfer Fractional Derivative Integrals Transforms Mittag&Ndash;Leffler-Type Function Riemann&Ndash;Liouville Fractional Derivative Ultra-Hyperbolic Operator |
title_short |
The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation |
title_full |
The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation |
title_fullStr |
The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation |
title_full_unstemmed |
The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation |
title_sort |
The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation |
dc.creator.none.fl_str_mv |
Dorrego, Gustavo |
author |
Dorrego, Gustavo |
author_facet |
Dorrego, Gustavo |
author_role |
author |
dc.subject.none.fl_str_mv |
Caputo Fractional Derivative Fox'S H-Function Fractional Differential Equation Hilfer Fractional Derivative Integrals Transforms Mittag&Ndash;Leffler-Type Function Riemann&Ndash;Liouville Fractional Derivative Ultra-Hyperbolic Operator |
topic |
Caputo Fractional Derivative Fox'S H-Function Fractional Differential Equation Hilfer Fractional Derivative Integrals Transforms Mittag&Ndash;Leffler-Type Function Riemann&Ndash;Liouville Fractional Derivative Ultra-Hyperbolic Operator |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we study an n-dimensional generalization of time-fractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox's H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated. Fil: Dorrego, Gustavo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper we study an n-dimensional generalization of time-fractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox's H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/39132 Dorrego, Gustavo; The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation; Taylor & Francis Ltd; Integral Transforms And Special Functions; 27; 5; 5-2016; 392-404 1065-2469 1476-8291 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/39132 |
identifier_str_mv |
Dorrego, Gustavo; The Mittag–Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation; Taylor & Francis Ltd; Integral Transforms And Special Functions; 27; 5; 5-2016; 392-404 1065-2469 1476-8291 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/10652469.2016.1144185 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/10652469.2016.1144185 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082625339392000 |
score |
13.22299 |