Combining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanism

Autores
Luchi, Adriano Martín; Villafañe, Roxana Noelia; Gómez Chávez, José Leonardo; Bogado, María Lucrecia; Angelina, Emilio Luis; Peruchena, Nélida María
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Luchi, Adriano Martín. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Luchi, Adriano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.
Fil: Villafañe, Roxana Noelia. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.
Fil: Gómez Chávez, José Leonardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Gómez Chávez, José Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.
Fil: Bogado, María Lucrecia. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Bogado, María Lucrecia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.
Fil: Angelina, Emilio Luis. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Angelina, Emilio Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.
Fil: Peruchena, Nélida María. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Peruchena, Nélida María. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.
Trypanosoma cruzi, a flagellate protozoan parasite, is responsible for Chagas disease. The parasite major cysteine protease, cruzain (Cz), plays a vital role at every stage of its life cycle and the active-site region of the enzyme, similar to those of other members of the papain superfamily, is well characterized. Taking advantage of structural information available in public databases about Cz bound to known covalent inhibitors, along with their corresponding activity annotations, in this work, we performed a deep analysis of the molecular interactions at the Cz binding cleft, in order to investigate the enzyme inhibition mechanism. Our toolbox for performing this study consisted of the charge density topological analysis of the complexes to extract the molecular interactions and machine learning classification models to relate the interactions with biological activity. More precisely, such a combination was useful for the classification of molecular interactions as “active-like” or “inactive-like” according to whether they are prevalent in the most active or less active complexes, respectively. Further analysis of interactions with the help of unsupervised learning tools also allowed the understanding of how these interactions come into play together to trigger the enzyme into a particular conformational state. Most active inhibitors induce some conformational changes within the enzyme that lead to an overall better fit of the inhibitor into the binding cleft. Curiously, some of these conformational changes can be considered as a hallmark of the substrate recognition event, which means that most active inhibitors are likely recognized by the enzyme as if they were its own substrate so that the catalytic machinery is arranged as if it is about to break the substrate scissile bond. Overall, these results contribute to a better understanding of the enzyme inhibition mechanism. Moreover, the information about main interactions extracted through this work is already being used in our lab to guide docking solutions in ongoing prospective virtual screening campaigns to search for novel noncovalent cruzain inhibitors.
Fuente
ACS Omega, 2019, vol. 4, no. 22, p. 19582−19594.
Materia
Trypanosoma cruzi
Chagas disease
Parasite
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
Institución
Universidad Nacional del Nordeste
OAI Identificador
oai:repositorio.unne.edu.ar:123456789/56524

id RIUNNE_c07d1c24a18ae8cae7cda03b33ae0e1b
oai_identifier_str oai:repositorio.unne.edu.ar:123456789/56524
network_acronym_str RIUNNE
repository_id_str 4871
network_name_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
spelling Combining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanismLuchi, Adriano MartínVillafañe, Roxana NoeliaGómez Chávez, José LeonardoBogado, María LucreciaAngelina, Emilio LuisPeruchena, Nélida MaríaTrypanosoma cruziChagas diseaseParasiteFil: Luchi, Adriano Martín. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.Fil: Luchi, Adriano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.Fil: Villafañe, Roxana Noelia. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.Fil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.Fil: Gómez Chávez, José Leonardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.Fil: Gómez Chávez, José Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.Fil: Bogado, María Lucrecia. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.Fil: Bogado, María Lucrecia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.Fil: Angelina, Emilio Luis. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.Fil: Angelina, Emilio Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.Fil: Peruchena, Nélida María. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.Fil: Peruchena, Nélida María. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.Trypanosoma cruzi, a flagellate protozoan parasite, is responsible for Chagas disease. The parasite major cysteine protease, cruzain (Cz), plays a vital role at every stage of its life cycle and the active-site region of the enzyme, similar to those of other members of the papain superfamily, is well characterized. Taking advantage of structural information available in public databases about Cz bound to known covalent inhibitors, along with their corresponding activity annotations, in this work, we performed a deep analysis of the molecular interactions at the Cz binding cleft, in order to investigate the enzyme inhibition mechanism. Our toolbox for performing this study consisted of the charge density topological analysis of the complexes to extract the molecular interactions and machine learning classification models to relate the interactions with biological activity. More precisely, such a combination was useful for the classification of molecular interactions as “active-like” or “inactive-like” according to whether they are prevalent in the most active or less active complexes, respectively. Further analysis of interactions with the help of unsupervised learning tools also allowed the understanding of how these interactions come into play together to trigger the enzyme into a particular conformational state. Most active inhibitors induce some conformational changes within the enzyme that lead to an overall better fit of the inhibitor into the binding cleft. Curiously, some of these conformational changes can be considered as a hallmark of the substrate recognition event, which means that most active inhibitors are likely recognized by the enzyme as if they were its own substrate so that the catalytic machinery is arranged as if it is about to break the substrate scissile bond. Overall, these results contribute to a better understanding of the enzyme inhibition mechanism. Moreover, the information about main interactions extracted through this work is already being used in our lab to guide docking solutions in ongoing prospective virtual screening campaigns to search for novel noncovalent cruzain inhibitors.American Chemical Society2019info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfp. 19582−19594application/pdfLuchi, Adriano Martín, et al., 2019. Combining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanism. ACS Omega. Washington: American Chemical Society, vol. 4, no. 22, p. 19582−19594. ISSN 2470-1343.2470-1343http://repositorio.unne.edu.ar/handle/123456789/56524ACS Omega, 2019, vol. 4, no. 22, p. 19582−19594.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordesteenghttps://pubs.acs.org/doi/epdf/10.1021/acsomega.9b01934?ref=article_openPDFinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-10-23T11:18:03Zoai:repositorio.unne.edu.ar:123456789/56524instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-10-23 11:18:03.798Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse
dc.title.none.fl_str_mv Combining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanism
title Combining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanism
spellingShingle Combining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanism
Luchi, Adriano Martín
Trypanosoma cruzi
Chagas disease
Parasite
title_short Combining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanism
title_full Combining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanism
title_fullStr Combining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanism
title_full_unstemmed Combining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanism
title_sort Combining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanism
dc.creator.none.fl_str_mv Luchi, Adriano Martín
Villafañe, Roxana Noelia
Gómez Chávez, José Leonardo
Bogado, María Lucrecia
Angelina, Emilio Luis
Peruchena, Nélida María
author Luchi, Adriano Martín
author_facet Luchi, Adriano Martín
Villafañe, Roxana Noelia
Gómez Chávez, José Leonardo
Bogado, María Lucrecia
Angelina, Emilio Luis
Peruchena, Nélida María
author_role author
author2 Villafañe, Roxana Noelia
Gómez Chávez, José Leonardo
Bogado, María Lucrecia
Angelina, Emilio Luis
Peruchena, Nélida María
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Trypanosoma cruzi
Chagas disease
Parasite
topic Trypanosoma cruzi
Chagas disease
Parasite
dc.description.none.fl_txt_mv Fil: Luchi, Adriano Martín. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Luchi, Adriano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.
Fil: Villafañe, Roxana Noelia. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.
Fil: Gómez Chávez, José Leonardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Gómez Chávez, José Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.
Fil: Bogado, María Lucrecia. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Bogado, María Lucrecia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.
Fil: Angelina, Emilio Luis. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Angelina, Emilio Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.
Fil: Peruchena, Nélida María. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Peruchena, Nélida María. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.
Trypanosoma cruzi, a flagellate protozoan parasite, is responsible for Chagas disease. The parasite major cysteine protease, cruzain (Cz), plays a vital role at every stage of its life cycle and the active-site region of the enzyme, similar to those of other members of the papain superfamily, is well characterized. Taking advantage of structural information available in public databases about Cz bound to known covalent inhibitors, along with their corresponding activity annotations, in this work, we performed a deep analysis of the molecular interactions at the Cz binding cleft, in order to investigate the enzyme inhibition mechanism. Our toolbox for performing this study consisted of the charge density topological analysis of the complexes to extract the molecular interactions and machine learning classification models to relate the interactions with biological activity. More precisely, such a combination was useful for the classification of molecular interactions as “active-like” or “inactive-like” according to whether they are prevalent in the most active or less active complexes, respectively. Further analysis of interactions with the help of unsupervised learning tools also allowed the understanding of how these interactions come into play together to trigger the enzyme into a particular conformational state. Most active inhibitors induce some conformational changes within the enzyme that lead to an overall better fit of the inhibitor into the binding cleft. Curiously, some of these conformational changes can be considered as a hallmark of the substrate recognition event, which means that most active inhibitors are likely recognized by the enzyme as if they were its own substrate so that the catalytic machinery is arranged as if it is about to break the substrate scissile bond. Overall, these results contribute to a better understanding of the enzyme inhibition mechanism. Moreover, the information about main interactions extracted through this work is already being used in our lab to guide docking solutions in ongoing prospective virtual screening campaigns to search for novel noncovalent cruzain inhibitors.
description Fil: Luchi, Adriano Martín. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Luchi, Adriano Martín, et al., 2019. Combining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanism. ACS Omega. Washington: American Chemical Society, vol. 4, no. 22, p. 19582−19594. ISSN 2470-1343.
2470-1343
http://repositorio.unne.edu.ar/handle/123456789/56524
identifier_str_mv Luchi, Adriano Martín, et al., 2019. Combining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanism. ACS Omega. Washington: American Chemical Society, vol. 4, no. 22, p. 19582−19594. ISSN 2470-1343.
2470-1343
url http://repositorio.unne.edu.ar/handle/123456789/56524
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://pubs.acs.org/doi/epdf/10.1021/acsomega.9b01934?ref=article_openPDF
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
dc.format.none.fl_str_mv application/pdf
p. 19582−19594
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv ACS Omega, 2019, vol. 4, no. 22, p. 19582−19594.
reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname:Universidad Nacional del Nordeste
reponame_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
collection Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname_str Universidad Nacional del Nordeste
repository.name.fl_str_mv Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste
repository.mail.fl_str_mv ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar
_version_ 1846787772482846720
score 12.982451