Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism
- Autores
- Luchi, Adriano Martín; Villafañe, Roxana Noelia; Gómez Chávez, José Leonardo; Bogado, María Lucrecia; Angelina, Emilio Luis; Peruchena, Nelida Maria
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Trypanosoma cruzi, a flagellate protozoan parasite, is responsible for Chagas disease. The parasite major cysteine protease, cruzain (Cz), plays a vital role at every stage of its life cycle and the active-site region of the enzyme, similar to those of other members of the papain superfamily, is well characterized. Taking advantage of structural information available in public databases about Cz bound to known covalent inhibitors, along with their corresponding activity annotations, in this work, we performed a deep analysis of the molecular interactions at the Cz binding cleft, in order to investigate the enzyme inhibition mechanism. Our toolbox for performing this study consisted of the charge density topological analysis of the complexes to extract the molecular interactions and machine learning classification models to relate the interactions with biological activity. More precisely, such a combination was useful for the classification of molecular interactions as "active-like" or "inactive-like" according to whether they are prevalent in the most active or less active complexes, respectively. Further analysis of interactions with the help of unsupervised learning tools also allowed the understanding of how these interactions come into play together to trigger the enzyme into a particular conformational state. Most active inhibitors induce some conformational changes within the enzyme that lead to an overall better fit of the inhibitor into the binding cleft. Curiously, some of these conformational changes can be considered as a hallmark of the substrate recognition event, which means that most active inhibitors are likely recognized by the enzyme as if they were its own substrate so that the catalytic machinery is arranged as if it is about to break the substrate scissile bond. Overall, these results contribute to a better understanding of the enzyme inhibition mechanism. Moreover, the information about main interactions extracted through this work is already being used in our lab to guide docking solutions in ongoing prospective virtual screening campaigns to search for novel noncovalent cruzain inhibitors.
Fil: Luchi, Adriano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Gómez Chávez, José Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Bogado, María Lucrecia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Angelina, Emilio Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Peruchena, Nelida Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina - Materia
-
STRUCTURE-BASED DRUG DISCOVERY
CHARGE DENSITY
QM-QTAIM
SVM-RFE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/132643
Ver los metadatos del registro completo
id |
CONICETDig_c48904543ee5fea3ad13dc50e06fcaa7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/132643 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition MechanismLuchi, Adriano MartínVillafañe, Roxana NoeliaGómez Chávez, José LeonardoBogado, María LucreciaAngelina, Emilio LuisPeruchena, Nelida MariaSTRUCTURE-BASED DRUG DISCOVERYCHARGE DENSITYQM-QTAIMSVM-RFEhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Trypanosoma cruzi, a flagellate protozoan parasite, is responsible for Chagas disease. The parasite major cysteine protease, cruzain (Cz), plays a vital role at every stage of its life cycle and the active-site region of the enzyme, similar to those of other members of the papain superfamily, is well characterized. Taking advantage of structural information available in public databases about Cz bound to known covalent inhibitors, along with their corresponding activity annotations, in this work, we performed a deep analysis of the molecular interactions at the Cz binding cleft, in order to investigate the enzyme inhibition mechanism. Our toolbox for performing this study consisted of the charge density topological analysis of the complexes to extract the molecular interactions and machine learning classification models to relate the interactions with biological activity. More precisely, such a combination was useful for the classification of molecular interactions as "active-like" or "inactive-like" according to whether they are prevalent in the most active or less active complexes, respectively. Further analysis of interactions with the help of unsupervised learning tools also allowed the understanding of how these interactions come into play together to trigger the enzyme into a particular conformational state. Most active inhibitors induce some conformational changes within the enzyme that lead to an overall better fit of the inhibitor into the binding cleft. Curiously, some of these conformational changes can be considered as a hallmark of the substrate recognition event, which means that most active inhibitors are likely recognized by the enzyme as if they were its own substrate so that the catalytic machinery is arranged as if it is about to break the substrate scissile bond. Overall, these results contribute to a better understanding of the enzyme inhibition mechanism. Moreover, the information about main interactions extracted through this work is already being used in our lab to guide docking solutions in ongoing prospective virtual screening campaigns to search for novel noncovalent cruzain inhibitors.Fil: Luchi, Adriano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Gómez Chávez, José Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Bogado, María Lucrecia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Angelina, Emilio Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Peruchena, Nelida Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaAmerican Chemical Society2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/132643Luchi, Adriano Martín; Villafañe, Roxana Noelia; Gómez Chávez, José Leonardo; Bogado, María Lucrecia; Angelina, Emilio Luis; et al.; Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism; American Chemical Society; ACS Omega; 4; 22; 11-2019; 19582-195942470-1343CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsomega.9b01934info:eu-repo/semantics/altIdentifier/doi/10.1021/acsomega.9b01934info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:45Zoai:ri.conicet.gov.ar:11336/132643instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:45.562CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism |
title |
Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism |
spellingShingle |
Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism Luchi, Adriano Martín STRUCTURE-BASED DRUG DISCOVERY CHARGE DENSITY QM-QTAIM SVM-RFE |
title_short |
Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism |
title_full |
Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism |
title_fullStr |
Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism |
title_full_unstemmed |
Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism |
title_sort |
Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism |
dc.creator.none.fl_str_mv |
Luchi, Adriano Martín Villafañe, Roxana Noelia Gómez Chávez, José Leonardo Bogado, María Lucrecia Angelina, Emilio Luis Peruchena, Nelida Maria |
author |
Luchi, Adriano Martín |
author_facet |
Luchi, Adriano Martín Villafañe, Roxana Noelia Gómez Chávez, José Leonardo Bogado, María Lucrecia Angelina, Emilio Luis Peruchena, Nelida Maria |
author_role |
author |
author2 |
Villafañe, Roxana Noelia Gómez Chávez, José Leonardo Bogado, María Lucrecia Angelina, Emilio Luis Peruchena, Nelida Maria |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
STRUCTURE-BASED DRUG DISCOVERY CHARGE DENSITY QM-QTAIM SVM-RFE |
topic |
STRUCTURE-BASED DRUG DISCOVERY CHARGE DENSITY QM-QTAIM SVM-RFE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Trypanosoma cruzi, a flagellate protozoan parasite, is responsible for Chagas disease. The parasite major cysteine protease, cruzain (Cz), plays a vital role at every stage of its life cycle and the active-site region of the enzyme, similar to those of other members of the papain superfamily, is well characterized. Taking advantage of structural information available in public databases about Cz bound to known covalent inhibitors, along with their corresponding activity annotations, in this work, we performed a deep analysis of the molecular interactions at the Cz binding cleft, in order to investigate the enzyme inhibition mechanism. Our toolbox for performing this study consisted of the charge density topological analysis of the complexes to extract the molecular interactions and machine learning classification models to relate the interactions with biological activity. More precisely, such a combination was useful for the classification of molecular interactions as "active-like" or "inactive-like" according to whether they are prevalent in the most active or less active complexes, respectively. Further analysis of interactions with the help of unsupervised learning tools also allowed the understanding of how these interactions come into play together to trigger the enzyme into a particular conformational state. Most active inhibitors induce some conformational changes within the enzyme that lead to an overall better fit of the inhibitor into the binding cleft. Curiously, some of these conformational changes can be considered as a hallmark of the substrate recognition event, which means that most active inhibitors are likely recognized by the enzyme as if they were its own substrate so that the catalytic machinery is arranged as if it is about to break the substrate scissile bond. Overall, these results contribute to a better understanding of the enzyme inhibition mechanism. Moreover, the information about main interactions extracted through this work is already being used in our lab to guide docking solutions in ongoing prospective virtual screening campaigns to search for novel noncovalent cruzain inhibitors. Fil: Luchi, Adriano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Gómez Chávez, José Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Bogado, María Lucrecia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Angelina, Emilio Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Peruchena, Nelida Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina |
description |
Trypanosoma cruzi, a flagellate protozoan parasite, is responsible for Chagas disease. The parasite major cysteine protease, cruzain (Cz), plays a vital role at every stage of its life cycle and the active-site region of the enzyme, similar to those of other members of the papain superfamily, is well characterized. Taking advantage of structural information available in public databases about Cz bound to known covalent inhibitors, along with their corresponding activity annotations, in this work, we performed a deep analysis of the molecular interactions at the Cz binding cleft, in order to investigate the enzyme inhibition mechanism. Our toolbox for performing this study consisted of the charge density topological analysis of the complexes to extract the molecular interactions and machine learning classification models to relate the interactions with biological activity. More precisely, such a combination was useful for the classification of molecular interactions as "active-like" or "inactive-like" according to whether they are prevalent in the most active or less active complexes, respectively. Further analysis of interactions with the help of unsupervised learning tools also allowed the understanding of how these interactions come into play together to trigger the enzyme into a particular conformational state. Most active inhibitors induce some conformational changes within the enzyme that lead to an overall better fit of the inhibitor into the binding cleft. Curiously, some of these conformational changes can be considered as a hallmark of the substrate recognition event, which means that most active inhibitors are likely recognized by the enzyme as if they were its own substrate so that the catalytic machinery is arranged as if it is about to break the substrate scissile bond. Overall, these results contribute to a better understanding of the enzyme inhibition mechanism. Moreover, the information about main interactions extracted through this work is already being used in our lab to guide docking solutions in ongoing prospective virtual screening campaigns to search for novel noncovalent cruzain inhibitors. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/132643 Luchi, Adriano Martín; Villafañe, Roxana Noelia; Gómez Chávez, José Leonardo; Bogado, María Lucrecia; Angelina, Emilio Luis; et al.; Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism; American Chemical Society; ACS Omega; 4; 22; 11-2019; 19582-19594 2470-1343 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/132643 |
identifier_str_mv |
Luchi, Adriano Martín; Villafañe, Roxana Noelia; Gómez Chávez, José Leonardo; Bogado, María Lucrecia; Angelina, Emilio Luis; et al.; Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism; American Chemical Society; ACS Omega; 4; 22; 11-2019; 19582-19594 2470-1343 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsomega.9b01934 info:eu-repo/semantics/altIdentifier/doi/10.1021/acsomega.9b01934 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270169804570624 |
score |
13.13397 |