About speedup improvement of classical genetic algorithms using cuda environment

Autores
Mroginski, Javier Luis; Castro, Hugo Guillermo
Año de publicación
2016
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Laboratorio de Mecánica Computacional; Argentina.
Fil: Castro, Hugo Guillermo. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Castro, Hugo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Laboratorio de Mecánica Computacional; Argentina.
Due to the increasing computational cost required for the numerical solution of evolutionary systems and problems based on topological design, in the last years, many parallel algorithms have been developed in order to improve its performance. Perhaps, the main numerical tool used to solve heuristic problems is known as Genetic Algorithm (GA), deriving its name from the similarity to the evolutionary theory of Darwing. During the last decade, Graphic Processing Unit (GPU) has been used for computing acceleration due to the intrinsic vector-oriented design of the chip set. This gave race to a new programming paradigm: the General Purpose Computing on Graphics Processing Units (GPGPU). Which was replaced then by the Compute Unified Device Architecture (CUDA) environment in 2007. CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of the graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this work, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks (De Jong, Rastring and Ackley functions) is presented. The obtained results using a GeForce GTX 750 Ti GPU shown that the proposed code is a valuable tool for acceleration of GAs, improving its speedup in about 130%.
Fuente
Mecánica Computacional, 2016, vol. 34, p. 3295-3295.
Materia
Metaheuristic optimization
CUDA
C++
HPC
Genetic algorithm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
Institución
Universidad Nacional del Nordeste
OAI Identificador
oai:repositorio.unne.edu.ar:123456789/51806

id RIUNNE_a16aebd17a8f3c893d798c9fabd8dc84
oai_identifier_str oai:repositorio.unne.edu.ar:123456789/51806
network_acronym_str RIUNNE
repository_id_str 4871
network_name_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
spelling About speedup improvement of classical genetic algorithms using cuda environmentMroginski, Javier LuisCastro, Hugo GuillermoMetaheuristic optimizationCUDAC++HPCGenetic algorithmFil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Laboratorio de Mecánica Computacional; Argentina.Fil: Castro, Hugo Guillermo. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.Fil: Castro, Hugo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Laboratorio de Mecánica Computacional; Argentina.Due to the increasing computational cost required for the numerical solution of evolutionary systems and problems based on topological design, in the last years, many parallel algorithms have been developed in order to improve its performance. Perhaps, the main numerical tool used to solve heuristic problems is known as Genetic Algorithm (GA), deriving its name from the similarity to the evolutionary theory of Darwing. During the last decade, Graphic Processing Unit (GPU) has been used for computing acceleration due to the intrinsic vector-oriented design of the chip set. This gave race to a new programming paradigm: the General Purpose Computing on Graphics Processing Units (GPGPU). Which was replaced then by the Compute Unified Device Architecture (CUDA) environment in 2007. CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of the graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this work, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks (De Jong, Rastring and Ackley functions) is presented. The obtained results using a GeForce GTX 750 Ti GPU shown that the proposed code is a valuable tool for acceleration of GAs, improving its speedup in about 130%.Asociación Argentina de Mecánica Computacional2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfp. 3295-3295application/pdfMroginski, Javier Luis y Castro, Hugo Guillermo, 2016. About speedup improvement of classical genetic algorithms using cuda environment. Mecánica Computacional. Santa Fe: Asociación Argentina de Mecánica Computacional, vol. 34, p. 3295-3295. E-ISSN 2591-3522.http://repositorio.unne.edu.ar/handle/123456789/51806Mecánica Computacional, 2016, vol. 34, p. 3295-3295.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordestespainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-09-04T11:13:11Zoai:repositorio.unne.edu.ar:123456789/51806instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-09-04 11:13:11.999Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse
dc.title.none.fl_str_mv About speedup improvement of classical genetic algorithms using cuda environment
title About speedup improvement of classical genetic algorithms using cuda environment
spellingShingle About speedup improvement of classical genetic algorithms using cuda environment
Mroginski, Javier Luis
Metaheuristic optimization
CUDA
C++
HPC
Genetic algorithm
title_short About speedup improvement of classical genetic algorithms using cuda environment
title_full About speedup improvement of classical genetic algorithms using cuda environment
title_fullStr About speedup improvement of classical genetic algorithms using cuda environment
title_full_unstemmed About speedup improvement of classical genetic algorithms using cuda environment
title_sort About speedup improvement of classical genetic algorithms using cuda environment
dc.creator.none.fl_str_mv Mroginski, Javier Luis
Castro, Hugo Guillermo
author Mroginski, Javier Luis
author_facet Mroginski, Javier Luis
Castro, Hugo Guillermo
author_role author
author2 Castro, Hugo Guillermo
author2_role author
dc.subject.none.fl_str_mv Metaheuristic optimization
CUDA
C++
HPC
Genetic algorithm
topic Metaheuristic optimization
CUDA
C++
HPC
Genetic algorithm
dc.description.none.fl_txt_mv Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Laboratorio de Mecánica Computacional; Argentina.
Fil: Castro, Hugo Guillermo. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Castro, Hugo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Laboratorio de Mecánica Computacional; Argentina.
Due to the increasing computational cost required for the numerical solution of evolutionary systems and problems based on topological design, in the last years, many parallel algorithms have been developed in order to improve its performance. Perhaps, the main numerical tool used to solve heuristic problems is known as Genetic Algorithm (GA), deriving its name from the similarity to the evolutionary theory of Darwing. During the last decade, Graphic Processing Unit (GPU) has been used for computing acceleration due to the intrinsic vector-oriented design of the chip set. This gave race to a new programming paradigm: the General Purpose Computing on Graphics Processing Units (GPGPU). Which was replaced then by the Compute Unified Device Architecture (CUDA) environment in 2007. CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of the graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this work, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks (De Jong, Rastring and Ackley functions) is presented. The obtained results using a GeForce GTX 750 Ti GPU shown that the proposed code is a valuable tool for acceleration of GAs, improving its speedup in about 130%.
description Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Mroginski, Javier Luis y Castro, Hugo Guillermo, 2016. About speedup improvement of classical genetic algorithms using cuda environment. Mecánica Computacional. Santa Fe: Asociación Argentina de Mecánica Computacional, vol. 34, p. 3295-3295. E-ISSN 2591-3522.
http://repositorio.unne.edu.ar/handle/123456789/51806
identifier_str_mv Mroginski, Javier Luis y Castro, Hugo Guillermo, 2016. About speedup improvement of classical genetic algorithms using cuda environment. Mecánica Computacional. Santa Fe: Asociación Argentina de Mecánica Computacional, vol. 34, p. 3295-3295. E-ISSN 2591-3522.
url http://repositorio.unne.edu.ar/handle/123456789/51806
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
dc.format.none.fl_str_mv application/pdf
p. 3295-3295
application/pdf
dc.publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
dc.source.none.fl_str_mv Mecánica Computacional, 2016, vol. 34, p. 3295-3295.
reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname:Universidad Nacional del Nordeste
reponame_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
collection Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname_str Universidad Nacional del Nordeste
repository.name.fl_str_mv Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste
repository.mail.fl_str_mv ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar
_version_ 1842344177836228608
score 12.623145