About speedup improvement of classical genetic algorithms using cuda environment
- Autores
- Mroginski, Javier Luis; Castro, Hugo Guillermo
- Año de publicación
- 2016
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Laboratorio de Mecánica Computacional; Argentina.
Fil: Castro, Hugo Guillermo. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Castro, Hugo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Laboratorio de Mecánica Computacional; Argentina.
Due to the increasing computational cost required for the numerical solution of evolutionary systems and problems based on topological design, in the last years, many parallel algorithms have been developed in order to improve its performance. Perhaps, the main numerical tool used to solve heuristic problems is known as Genetic Algorithm (GA), deriving its name from the similarity to the evolutionary theory of Darwing. During the last decade, Graphic Processing Unit (GPU) has been used for computing acceleration due to the intrinsic vector-oriented design of the chip set. This gave race to a new programming paradigm: the General Purpose Computing on Graphics Processing Units (GPGPU). Which was replaced then by the Compute Unified Device Architecture (CUDA) environment in 2007. CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of the graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this work, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks (De Jong, Rastring and Ackley functions) is presented. The obtained results using a GeForce GTX 750 Ti GPU shown that the proposed code is a valuable tool for acceleration of GAs, improving its speedup in about 130%. - Fuente
- Mecánica Computacional, 2016, vol. 34, p. 3295-3295.
- Materia
-
Metaheuristic optimization
CUDA
C++
HPC
Genetic algorithm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional del Nordeste
- OAI Identificador
- oai:repositorio.unne.edu.ar:123456789/51806
Ver los metadatos del registro completo
id |
RIUNNE_a16aebd17a8f3c893d798c9fabd8dc84 |
---|---|
oai_identifier_str |
oai:repositorio.unne.edu.ar:123456789/51806 |
network_acronym_str |
RIUNNE |
repository_id_str |
4871 |
network_name_str |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
spelling |
About speedup improvement of classical genetic algorithms using cuda environmentMroginski, Javier LuisCastro, Hugo GuillermoMetaheuristic optimizationCUDAC++HPCGenetic algorithmFil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Laboratorio de Mecánica Computacional; Argentina.Fil: Castro, Hugo Guillermo. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.Fil: Castro, Hugo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Laboratorio de Mecánica Computacional; Argentina.Due to the increasing computational cost required for the numerical solution of evolutionary systems and problems based on topological design, in the last years, many parallel algorithms have been developed in order to improve its performance. Perhaps, the main numerical tool used to solve heuristic problems is known as Genetic Algorithm (GA), deriving its name from the similarity to the evolutionary theory of Darwing. During the last decade, Graphic Processing Unit (GPU) has been used for computing acceleration due to the intrinsic vector-oriented design of the chip set. This gave race to a new programming paradigm: the General Purpose Computing on Graphics Processing Units (GPGPU). Which was replaced then by the Compute Unified Device Architecture (CUDA) environment in 2007. CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of the graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this work, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks (De Jong, Rastring and Ackley functions) is presented. The obtained results using a GeForce GTX 750 Ti GPU shown that the proposed code is a valuable tool for acceleration of GAs, improving its speedup in about 130%.Asociación Argentina de Mecánica Computacional2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfp. 3295-3295application/pdfMroginski, Javier Luis y Castro, Hugo Guillermo, 2016. About speedup improvement of classical genetic algorithms using cuda environment. Mecánica Computacional. Santa Fe: Asociación Argentina de Mecánica Computacional, vol. 34, p. 3295-3295. E-ISSN 2591-3522.http://repositorio.unne.edu.ar/handle/123456789/51806Mecánica Computacional, 2016, vol. 34, p. 3295-3295.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordestespainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-09-04T11:13:11Zoai:repositorio.unne.edu.ar:123456789/51806instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-09-04 11:13:11.999Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse |
dc.title.none.fl_str_mv |
About speedup improvement of classical genetic algorithms using cuda environment |
title |
About speedup improvement of classical genetic algorithms using cuda environment |
spellingShingle |
About speedup improvement of classical genetic algorithms using cuda environment Mroginski, Javier Luis Metaheuristic optimization CUDA C++ HPC Genetic algorithm |
title_short |
About speedup improvement of classical genetic algorithms using cuda environment |
title_full |
About speedup improvement of classical genetic algorithms using cuda environment |
title_fullStr |
About speedup improvement of classical genetic algorithms using cuda environment |
title_full_unstemmed |
About speedup improvement of classical genetic algorithms using cuda environment |
title_sort |
About speedup improvement of classical genetic algorithms using cuda environment |
dc.creator.none.fl_str_mv |
Mroginski, Javier Luis Castro, Hugo Guillermo |
author |
Mroginski, Javier Luis |
author_facet |
Mroginski, Javier Luis Castro, Hugo Guillermo |
author_role |
author |
author2 |
Castro, Hugo Guillermo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Metaheuristic optimization CUDA C++ HPC Genetic algorithm |
topic |
Metaheuristic optimization CUDA C++ HPC Genetic algorithm |
dc.description.none.fl_txt_mv |
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Laboratorio de Mecánica Computacional; Argentina. Fil: Castro, Hugo Guillermo. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Fil: Castro, Hugo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Laboratorio de Mecánica Computacional; Argentina. Due to the increasing computational cost required for the numerical solution of evolutionary systems and problems based on topological design, in the last years, many parallel algorithms have been developed in order to improve its performance. Perhaps, the main numerical tool used to solve heuristic problems is known as Genetic Algorithm (GA), deriving its name from the similarity to the evolutionary theory of Darwing. During the last decade, Graphic Processing Unit (GPU) has been used for computing acceleration due to the intrinsic vector-oriented design of the chip set. This gave race to a new programming paradigm: the General Purpose Computing on Graphics Processing Units (GPGPU). Which was replaced then by the Compute Unified Device Architecture (CUDA) environment in 2007. CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of the graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this work, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks (De Jong, Rastring and Ackley functions) is presented. The obtained results using a GeForce GTX 750 Ti GPU shown that the proposed code is a valuable tool for acceleration of GAs, improving its speedup in about 130%. |
description |
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Mroginski, Javier Luis y Castro, Hugo Guillermo, 2016. About speedup improvement of classical genetic algorithms using cuda environment. Mecánica Computacional. Santa Fe: Asociación Argentina de Mecánica Computacional, vol. 34, p. 3295-3295. E-ISSN 2591-3522. http://repositorio.unne.edu.ar/handle/123456789/51806 |
identifier_str_mv |
Mroginski, Javier Luis y Castro, Hugo Guillermo, 2016. About speedup improvement of classical genetic algorithms using cuda environment. Mecánica Computacional. Santa Fe: Asociación Argentina de Mecánica Computacional, vol. 34, p. 3295-3295. E-ISSN 2591-3522. |
url |
http://repositorio.unne.edu.ar/handle/123456789/51806 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Atribución-NoComercial-SinDerivadas 2.5 Argentina |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Atribución-NoComercial-SinDerivadas 2.5 Argentina |
dc.format.none.fl_str_mv |
application/pdf p. 3295-3295 application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
dc.source.none.fl_str_mv |
Mecánica Computacional, 2016, vol. 34, p. 3295-3295. reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) instname:Universidad Nacional del Nordeste |
reponame_str |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
collection |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
instname_str |
Universidad Nacional del Nordeste |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste |
repository.mail.fl_str_mv |
ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar |
_version_ |
1842344177836228608 |
score |
12.623145 |